264231-28-9Relevant articles and documents
Electronic Communication in Confined Space Coronas of Shell-by-Shell Structured Al2O3 Nanoparticle Hybrids Containing Two Layers of Functional Organic Ligands
Stiegler, Lisa M. S.,Hirsch, Andreas
, p. 11864 - 11875 (2019)
A first series of examples for confined space interactions of electron-rich and electron-poor molecules organized in an internal corona of shell-by-shell (SbS)-structured Al2O3 nanoparticle (NP) hybrids is reported. The assembly concept of the corresponding hierarchical architectures relies on both covalent grafting of phosphonic acids on the NPs surface (SAMs formation; SAM=self-assembled monolayer) and exohedral interdigitation of orthogonal amphiphiles as the second ligand layer driven by solvophobic interactions. The electronic communication between the chromophores of different electron demand, such as pyrenes, perylenediimides (PDIs; with and without pyridinium bromide headgroups) and fullerenes was promoted at the layer interface. In this work, it is demonstrated that the efficient construction principle of the bilayer hybrids assembled around the electronically “innocent” Al2O3 core is robust enough to achieve control over electronic communication between electron-donors and -acceptors in the interlayer region. The electronic interactions between the electron-accepting and electron-donating moieties approaching each other at the layer interface were monitored by fluorescence measurements.
Smart Shell-by-Shell Nanoparticles with Tunable Perylene Fluorescence in the Organic Interlayer
Stiegler, Lisa M. S.,Klein, Stefanie,Kryschi, Carola,Neuhuber, Winfried,Hirsch, Andreas
supporting information, p. 1655 - 1669 (2020/12/02)
A new series of shell-by-shell (SbS)-functionalized Al2O3 nanoparticles (NPs) containing a perylene core in the organic interlayer as a fluorescence marker is introduced. Initially, the NPs were functionalized with both, a fluorescent perylene phosphonic acid derivative, together with the lipophilic hexadecylphosphonic acid or the fluorophilic (1 H,1 H,2 H,2H-perfluorodecyl)phosphonic acid. The lipophilic first-shell functionalized NPs were further implemented with amphiphiles built of aliphatic chains and polar head-groups. However, the fluorophilic NPs were combined with amphiphiles consisting of fluorocarbon tails and polar head-groups. Depending on the nature of the combined phosphonic acids and the amphiphiles, tuning of the perylene fluorescence can be accomplished due variations of supramolecular organization with the shell interface. Because the SbS-functionalized NPs dispose excellent dispersibility in water and in biological media, two sorts of NPs with different surface properties were tested with respect to biological fluorescent imaging applications. Depending on the agglomeration of the NPs, the cellular uptake differs. The uptake of larger agglomerates is facilitated by endocytosis, whereas individualized NPs cross directly the cellular membrane. Also, the larger agglomerates were preferentially incorporated by all tested cells.
Phosphonate-Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts
Forato, Florian,Belhboub, Anouar,Monot, Julien,Petit, Marc,Benoit, Roland,Sarou-Kanian, Vincent,Fayon, Franck,Jacquemin, Denis,Queffelec, Clémence,Bujoli, Bruno
supporting information, p. 2457 - 2465 (2018/02/06)
RhL2 complexes of phosphonate-derivatized 2,2′-bipyridine (bpy) ligands L were immobilized on titanium oxide particles generated in situ. Depending on the structure of the bipy ligand—number of tethers (1 or 2) to which the phosphonate end groups are attached and their location on the 2,2′-bipyridine backbone (4,4′-, 5,5′-, or 6,6′-positions)—the resulting supported catalysts showed comparable chemoselectivity but different kinetics for the hydrogenation of 6-methyl-5-hepten-2-one under hydrogen pressure. Characterization of the six supported catalysts suggested that the intrinsic geometry of each of the phosphonate-derivatized 2,2′-bipyridines leads to supported catalysts with different microstructures and different arrangements of the RhL2 species at the surface of the solid, which thereby affect their reactivity.
Fast assembling of magnetic iron oxide nanoparticles by microwave-assisted copper(I) catalyzed alkyne-azide cycloaddition (CuAAC)
Toulemon, Delphine,Pichon, Benoiit P.,Leuvrey, Cedric,Zafeiratos, Spyridon,Papaefthimiou, Vasiliki,Cattoen, Xavier,Begin-Colin, Sylvie
, p. 2849 - 2854 (2013/08/23)
Two dimensional (2D) nanoparticles (NP) assemblies have become very attractive due to their original collective properties, which can be modulated as a function of the nanostructure. Beyond precise control on nanostructure and easy way to perform, fast assembling processes are highly desirable to develop efficient and popular strategies to prepare systems with tunable collective properties. In this article, we report on the highly efficient and fast 2D assembling of iron oxide nanoparticles on a self-assembled monolayer (SAM) of organic molecules by the microwave (MW)-assisted copper(I) catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. Microwave irradiation favors a dramatic enhancement of the assembling reaction, which was completed with maximum density in NPs within one hour, much faster than the conventional CuAAC click reactions that require up to 48 h. Moreover, the MW-assisted click reaction presents the great advantage to preserve specific reactions between alkyne and azide groups at SAM and NP surfaces, respectively, and also to avoid undesired reactions. To the best of our knowledge, this is the first time this approach is performed to nanoparticles assembled on surfaces.
PREPARATION OF AN INORGANIC SUBSTRATE HAVING ANTIMICROBIAL PROPERTIES
-
Page/Page column 3, (2010/10/19)
The invention relates to a process for modifying an inorganic substrate, directed toward giving it antimicrobial properties, said process consisting in grafting in one or more steps onto a surface of said substrate groups with intrinsic antimicrobial properties or groups capable of releasing species with antimicrobial properties. The grafting is performed by means of an organophosphorus coupling agent. A subject of the invention is similarly a substrate obtained by this process, as well as diverse uses of such a substrate.