Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Ethanone, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)- is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

29389-04-6 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 29389-04-6 Structure
  • Basic information

    1. Product Name: Ethanone, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-
    2. Synonyms:
    3. CAS NO:29389-04-6
    4. Molecular Formula: C18H20O6
    5. Molecular Weight: 332.353
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 29389-04-6.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: Ethanone, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-(CAS DataBase Reference)
    10. NIST Chemistry Reference: Ethanone, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-(29389-04-6)
    11. EPA Substance Registry System: Ethanone, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-(29389-04-6)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 29389-04-6(Hazardous Substances Data)

29389-04-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 29389-04-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,9,3,8 and 9 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 29389-04:
(7*2)+(6*9)+(5*3)+(4*8)+(3*9)+(2*0)+(1*4)=146
146 % 10 = 6
So 29389-04-6 is a valid CAS Registry Number.

29389-04-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone

1.2 Other means of identification

Product number -
Other names α-(2,6-dimethoxyphenoxy)acetoveratrone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:29389-04-6 SDS

29389-04-6Relevant articles and documents

One-Pot Transformation of Lignin and Lignin Model Compounds into Benzimidazoles

Guo, Tao,He, Jianghua,Liu, Tianwei,Zhang, Yuetao

, (2022/02/07)

It is a challenging task to simultaneously achieve selective depolymerization and valorization of lignin due to their complex structure and relatively stable bonds. We herein report an efficient depolymerization strategy that employs 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as oxidant/catalyst to selectively convert different oxidized lignin models to a wide variety of 2-phenylbenzimidazole-based compounds in up to 94 % yields, by reacting with o-phenylenediamines with varied substituents. This method could take full advantage of both Cβ and/or Cγ atom in lignin structure to furnish the desirable products instead of forming byproducts, thus exhibiting high atom economy. Furthermore, this strategy can effectively transform both the oxidized hardwood (birch) and softwood (pine) lignin into the corresponding degradation products in up to 45 wt% and 30 wt%, respectively. Through a “one-pot” process, we have successfully realized the oxidation/depolymerization/valorization of natural birch lignin at the same time and produced the benzimidazole derivatives in up to 67 wt% total yields.

Thio-assisted reductive electrolytic cleavage of lignin β-O-4 models and authentic lignin

Fang, Zhen,Flynn, Michael G.,Jackson, James E.,Hegg, Eric L.

, p. 412 - 421 (2021/01/28)

Avoiding the use of expensive catalysts and harsh conditions such as elevated temperatures and high pressures is a critical goal in lignin depolymerization and valorization. In this study, we present a thio-assisted electrocatalytic reductive approach using inexpensive reticulated vitreous carbon (RVC) as the working cathode to cleave the β-O-4-type linkages in keto aryl ethers. In the presence of a pre-electrolyzed disulfide (2,2′-dithiodiethanol) and a radical inhibitor (BHT) at room temperature at a current density of 2.5 mA cm-2, cathodic reduction of nonphenolic β-O-4 dimers afforded over 90% of the corresponding monomeric C-O cleavage products in only 1.5 h. Extended to DDQ-oxidized poplar lignin, this combination of electric current and disulfide, applied over 6 h, released 36 wt% of ethyl acetate soluble fragments and 26 wt% of aqueous soluble fragments, leaving only 38 wt% of insoluble residue. These findings represent a significant improvement over the current alone values (24 wt% ethyl acetate soluble; 22 wt% aqueous soluble; 54 wt% insoluble residue) and represent an important next step in our efforts to develop a mild electrochemical method for reductive lignin deconstruction.

A multicentre synergistic polyoxometalate-based metal-organic framework for one-step selective oxidative cleavage of β-: O -4 lignin model compounds

Tian, Hong-Rui,Liu, Yi-Wei,Zhang, Zhong,Liu, Shu-Mei,Dang, Tian-Yi,Li, Xiao-Hui,Sun, Xiu-Wei,Lu, Ying,Liu, Shu-Xia

supporting information, p. 248 - 255 (2020/01/13)

A novel mixed-valence polyoxovanadate-based copper-organic framework, [CuI(bbi)]2{[CuI(bbi)]2VIV2VV8O26}·2H2O (NENU-MV-5, bbi = 1,1′-(1,4-butanediyl)bis(imidazole)), was facilely synthesized from routine reagents under mild hydrothermal conditions. Using NENU-MV-5 as a heterogeneous catalyst without any co-catalyst, one-step oxidative cleavage of β-O-4 lignin into phenols and aromatic acids with high catalytic activity and selectivity was realized under an oxygen atmosphere. No obvious decrease in activity was observed after five cycles, which indicates the excellent stability and sustainability of NENU-MV-5. The perfect catalytic performance of NENU-MV-5 can be attributed to the multi-site synergistic effect of the mixed-valence VV-O-VIV sites on polyoxovanadate for the oxidation of β-O-4 alcohol to β-O-4 ketone and the Cu(i) sites on the framework for the rapid cleavage of the Cα-Cβ bond of β-O-4 ketone. This system represented the first co-catalyst-free example for the one-step selective degradation of lignin catalyzed by a well-defined crystalline catalyst with definite composition and structure in a single solvent.

Visible-light-induced C-C bond cleavage of lignin model compounds with cyanobenziodoxolone

Zheng, Ming,Huang, Yan,Zhan, Le-Wu,Hou, Jing,Li, Bin-Dong

supporting information, (2020/10/02)

The catalytic degradation of lignin to value-added chemicals has received considerable attention over the past decade. Photocatalysis provides promising approaches to enable previously inaccessible transformations. However, examples of the visible-light promoted degradation of lignin are still limited. In this work, the visible-light-induced selective C-C bond cleavage of β-O-4 lignin model compounds has been disclosed via β-scission of in situ generated alkoxy radical intermediates. With cyanobenziodoxolone as the oxidant, a variety of substrates could be transformed into aldehydes in moderate to good yields. In addition, unexpected acetal esters which could conveniently furnish formaldehyde and phenols by alcoholysis were observed.

Mechanochemical cleavage of lignin models and ligninviaoxidation and a subsequent base-catalyzed strategy

Dushkin, Alexandr V.,Su, Weike,Sun, Chen,Xu, Wenhao,Zheng, Lei

supporting information, p. 3489 - 3494 (2020/07/30)

Mechanochemical cleavage of lignin dimer model compounds to phenolic monomers has been developedviaa two-step strategy under milling conditions. In the first step of this process, the secondary benzylic alcohol of lignin β-O-4 linkages was selectively oxidized to the corresponding ketones over a 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/NaNO2catalytic system under milling conditions. In the subsequent step, mechanochemical selective cleavage of the Cβ-O bonds and Cα-Cβbonds of lignin β-O-4 ketones to acids and phenols was promoted by NaOH-catalyzed depolymerization. In addition, this two-step strategy was performed to depolymerize organosolv birch lignin, giving aromatic monomers with good selectivity for syringate. This approach provides an efficient method to convert the β-O-4 linkages of lignin to valuable aromatic monomers under mild reaction conditions.

Visible light induced redox neutral fragmentation of 1,2-diol derivatives

Chen, Kang,Schwarz, Johanna,Karl, Tobias A.,Chatterjee, Anamitra,K?nig, Burkhard

supporting information, p. 13144 - 13147 (2019/11/11)

A homogeneous, redox-neutral photo fragmentation of diol derivatives was developed. Under photo/hydrogen atom transfer (HAT) dual catalysis, diol derivatives such as lignin model compounds and diol monoesters undergo selective β C(sp3)-O bond cleavage to afford ketones, phenols and acids effectively.

Cleavage of lignin model compounds and ligninox using aqueous oxalic acid

Lindsay, Ashley C.,Kudo, Shinji,Sperry, Jonathan

supporting information, p. 7408 - 7415 (2019/08/15)

Aqueous oxalic acid cleaves oxidised β-O-4 lignin model compounds by two distinct mechanisms that are dependent on the presence of the hydroxymethyl substituent. Various β-O-4 phenoxyacetophenones that do not contain the hydroxymethyl substituent undergo oxidative cleavage upon exposure to aqueous oxalic acid in the presence of air, likely through concerted ring opening of a dioxetane intermediate to give the corresponding benzoic acid and phenyl formate. Importantly, detrimental side reactions arising from singlet oxygen and hydroperoxy radicals (from both O2 and oxalic acid) are minimal when the cleavage is run under air compared to neat oxygen. When oxidised β-O-4 lignin model compounds bearing the hydroxymethyl group are cleaved by aqueous oxalic acid, the resulting diketone and phenol products arise from a redox neutral cleavage that is analogous to the formic acid-sodium formate mediated lignin cleavage process reported by Stahl. Aqueous oxalic acid also cleaves lignin itself, with oxidised milled wood lignin (MWLox) from Pinus radiata giving a 14% yield of ethyl acetate soluble aromatics with good selectivity for vanillin. Aqueous oxalic acid appears to be a promising lignin cleavage system given the benign, bio-based reagents, absence of metals and organic solvents and a simple extraction procedure that enables oxalic acid recycling.

Selective C-O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis

Magallanes, Gabriel,K?rk?s, Markus D.,Bosque, Irene,Lee, Sudarat,Maldonado, Stephen,Stephenson, Corey R. J.

, p. 2252 - 2260 (2019/02/19)

Lignin, which is a highly cross-linked and irregular biopolymer, is nature's most abundant source of aromatic compounds and constitutes an attractive renewable resource for the production of aromatic commodity chemicals. Herein, we demonstrate a practical and operationally simple two-step degradation approach involving Pd-catalyzed aerobic oxidation and visible-light photoredox-catalyzed reductive fragmentation for the chemoselective cleavage of the β-O-4 linkage - the predominant linkage in lignin - for the generation of lower-molecular-weight aromatic building blocks. The developed strategy affords the β-O-4 bond cleaved products with high chemoselectivity and in high yields, is amenable to continuous flow processing, operates at ambient temperature and pressure, and is moisture- and oxygen-tolerant.

Photocatalytic Oxidation of Lignin Model Systems by Merging Visible-Light Photoredox and Palladium Catalysis

K?rk?s, Markus D.,Bosque, Irene,Matsuura, Bryan S.,Stephenson, Corey R. J.

supporting information, p. 5166 - 5169 (2016/10/14)

Lignin valorization has long been recognized as a sustainable solution for the renewable production of aromatic compounds. Two-step oxidation/reduction strategies, whereby the first oxidation step is required to "activate" lignin systems for controlled fragmentation reactions, have recently emerged as viable routes toward this goal. Herein we describe a catalytic protocol for oxidation of lignin model systems by combining photoredox and Pd catalysis. The developed dual catalytic protocol allowed the efficient oxidation of lignin model substrates at room temperature to afford the oxidized products in good to excellent yields.

SELECTIVE C-O BOND CLEAVAGE OF OXIDIZED LIGNIN AND LIGNIN-TYPE MATERIALS INTO SIMPLE AROMATIC COMPOUNDS

-

Page/Page column 26-27; 28, (2015/10/05)

A method to cleave C-C and C-0 bonds in β-Ο-4 linkages in lignin or lignin sub-units is described. The method includes oxidizing at least a portion of secondary benzylic alcohol groups in β-Ο-4 linkages in the lignin or lignin sub-unit to corresponding ketones and then leaving C-0 or C-C bonds in the oxidized lignin or lignin sub-unit by reacting it with an organic carboxylic acid, a salt of an organic carboxylic acids, and/or an ester of an organic carboxylic acids. The method may utilize a metal or metal-containing reagent or proceed without the metal or metal-containing reagent.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 29389-04-6