3430-70-4Relevant articles and documents
Hydrosilylation and Mukaiyama aldol-type reaction of quinolines and hydrosilylation of imines catalyzed by a mesoionic carbene-stabilized borenium ion
Bestvater, Brian P.,Clarke, Joshua J.,Crudden, Cathleen M.,DeJesus, Joseph F.,Devaraj, Karthik,Eisenberger, Patrick,Kojima, Ryoto
, p. 6786 - 6791 (2021/08/20)
Aldimines and ketimines containing electron-donating and electron-withdrawing groups can be hydrosilylated with borenium catalysts at as low as 1 mol% catalyst loading at room temperature, providing the corresponding secondary amines in excellent yields. Reactions with 2-phenylquinoline gave the 1,4-hydrosilylquinoline product selectively which can be further functionalized in a one-pot synthesis to give unique γ-amino alcohol derivatives. Control experiments suggest that the borenium ion catalyzes both the hydrosilylation and subsequent addition to the aldehyde.
Nickel?Copper bimetallic mesoporous nanoparticles: As an efficient heterogeneous catalyst for N-alkylation of amines with alcohols
Nasresfahani, Zahra,Kassaee, Mohamad Z.
, (2020/10/30)
A bimetallic catalyst (Ni/Cu-MCM-41) is prepared via co-condensation method. The latter is characterized by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), and nitrogen adsorption–desorption analysis. Catalytic performance of Ni/Cu-MCM-41 is probed in N-alkylation of amines with alcohols through a hydrogen autotransfer process. Noteworthy, this catalytic system appears very efficient for synthesis of a range of secondary and tertiary amines in good to excellent isolated yields. Moreover, the catalyst is successfully recovered and reused four times without notable decrease in its activity.
BF3·Et2O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant
Fan, Qing-Hua,Liu, Xintong,Luo, Zhenli,Pan, Yixiao,Xu, Lijin,Yang, Ji,Yao, Zhen,Zhang, Xin
supporting information, p. 5205 - 5211 (2021/07/29)
A versatile metal- and base-free direct reductive amination of aldehydes with amines using formic acid as a reductant under the catalysis of inexpensive BF3·Et2O has been developed. A wide range of primary and secondary amines and diversely substituted aldehydes are compatible with this transformation, allowing facile access to various secondary and tertiary amines in high yields with wide functional group tolerance. Moreover, the method is convenient for the late-stage functionalization of bioactive compounds and preparation of commercialized drug molecules and biologically relevant N-heterocycles. The procedure has the advantages of simple operation and workup and easy scale-up, and does not require dry conditions, an inert atmosphere or a water scavenger. Mechanistic studies reveal the involvement of imine activation by BF3and hydride transfer from formic acid.
High-Throughput Screening of Reductive Amination Reactions Using Desorption Electrospray Ionization Mass Spectrometry
Cooks, R. Graham,Ferreira, Christina R.,Li, Yangjie,Logsdon, David L.,Paschoal Sobreira, Tiago Jose,Thompson, David H.
supporting information, p. 1647 - 1657 (2020/10/26)
This study describes the latest generation of a high-throughput screening system that is capable of screening thousands of organic reactions in a single day. This system combines a liquid handling robot with desorption electrospray ionization (DESI) mass spectrometry (MS) for a rapid reaction mixture preparation, accelerated synthesis, and automated MS analysis. A total of 3840 unique reductive amination reactions were screened to demonstrate the throughputs that are capable with the system. Products, byproducts, and intermediates were all monitored in full-scan mass spectra, generating a complete view of the reaction progress. Tandem mass spectrometry experiments were conducted to verify the identity of the products formed. The amine and electrophile reactivity trends represented in the data match what is expected from theory, indicating that the system accurately models the reaction performance. The DESI results correlated well with those generated using more traditional mass spectrometry techniques like liquid chromatography-mass spectrometry, validating the data generated by the system.
Unsymmetrical triazolyl-naphthyridinyl-pyridine bridged highly active copper complexes supported on reduced graphene oxide and their application in water
Hu, Wenkang,Zhang, Yilin,Zhu, Haiyan,Ye, Dongdong,Wang, Dawei
supporting information, p. 5345 - 5351 (2019/10/11)
A novel unsymmetrical triazolyl-naphthyridinyl-pyridine ligand was designed and synthesized, and employed in the synthesis of a heterogeneous copper complex on reduced graphene oxide. The resulting copper composite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). This supported copper catalyst containing unsymmetrical triazolyl-naphthyridinyl-pyridine (only 0.1 mol%) showed excellent catalytic activity in water with good recyclability. Various functionalized quinoline derivatives were successfully synthesized in high yields through the green strategy in water. Other heterocyclic compounds, such as pyridine, 2-(pyridin-2-yl)quinoline, 1,8-naphthyridine, 5,6-dihydronaphtho[1,2-b][1,8]naphthyridine and 2-(pyridin-2-yl)-1,8-naphthyridine derivatives, were achieved in water with more than 80% yields. Mechanism studies revealed that this transformation occurs via dehydrogenation, condensation, and transfer hydrogenation and dehydrogenation processes which was supported by a deuterium labeling experiment.
Anthracene-rhodium complexes with metal coordination at the central ring-a new class of catalysts for reductive amination
Kuchuk, Ekaterina,Muratov, Karim,Perekalin, Dmitry S.,Chusov, Denis
supporting information, p. 83 - 87 (2019/01/04)
A new class of anthracene complexes with a metal coordinated at the central ring was applied in catalysis for the first time. As a result, a simple and efficient protocol for reductive amination that involves CO as a reducing agent has been developed. The rhodium complex [(cyclooctadiene)Rh(C10H4Me2(OMe)4)]+ (1 mol%) catalyses such reactions under mild conditions (40-130 °C) and produces a variety of amines in good yields (74-95%) without affecting the functional groups. The protocol is acceptable for all combinations of aldehydes (aromatic and aliphatic), ketones (aromatic and aliphatic) and amines (aromatic and aliphatic; primary and secondary).
Hitchhiker's Guide to Reductive Amination
Afanasyev, Oleg I.,Chusov, Denis,Makarova, Maria,Podyacheva, Evgeniya,Tsygankov, Alexey A.
supporting information, p. 2667 - 2677 (2019/06/19)
A comparative study of various widely used methods of reductive amination is reported. Specifically, such reducing agents as H 2, Pd/C, hydride reagents [NaBH 4, NaBH 3 CN, NaBH(OAc) 3 ], and CO/Rh 2 (OAc) 4 system were considered. For understanding the selectivity and activity of the reducing agents reviewed herein, different classes of starting materials were tested, including aliphatic and aromatic amines, as well as aliphatic and aromatic aldehydes and ketones. Most important advantages and drawbacks of the methods, such as selectivity of the target amine formation and toxicity of the reducing agents were compared. Methods were also considered from the viewpoint of green chemistry.
One-pot Reductive Amination of Carbonyl Compounds with NaBH4-B(OSO3H)3/SiO2 in Acetonitrile and in Solvent-free Condition
Hamadi, Hosein,Javadi, Samira
, p. 75 - 80 (2017/01/24)
An efficient one-pot procedure for the direct reductive amination of aldehyde and ketones was achieved in the presence of sodium borohydride by using B(OSO3H)3/SiO2(SBSA) as the reusable solid catalyst in acetonitrile and solvent-free conditions. Both aromatic and aliphatic aldehyde reacted well to give the corresponding amines in excellent yields. All the products are known and well-characterized. The catalyst is recoverable and could be easily recycled by filtration and reused several times without any significant loss of its activity. SBSA acts as a dual Br?nsted/Lewis acid that is an air-stable and cost-effective solid acid. [Figure not available: see fulltext.]
Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors
Yang, Lingling,Ma, Xiaobo,Yuan, Chen,He, Yanying,Li, Ling,Fang, Sha,Xia, Wei,He, Tao,Qian, Shan,Xu, Zhihong,Li, Guobo,Wang, Zhouyu
, p. 230 - 241 (2017/04/19)
Human sirtuin 2 (SIRT2) plays pivotal roles in multiple biological processes such as cell cycle regulation, autophagy, immune and inflammatory responses. Dysregulation of SIRT2 was considered as a main aspect contributing to several human diseases, including cancer. Development of new potent and selective SIRT2 inhibitors is currently desirable, which may provide a new strategy for treatment of related diseases. Herein, a structure-based optimization approach led to new 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as SIRT2 inhibitors. SAR analyses with new synthesized derivatives revealed a number of new potent SIRT2 inhibitors, among which 28e is the most potent inhibitor with an IC50 value of 42?nM. The selectivity analyses found that 28e has a very good selectivity to SIRT2 over SIRT1 and SIRT3. In cellular assays, 28e showed a potent ability to inhibit human breast cancer cell line MCF-7 and increase the acetylation of α-tubulin in a dose-dependent manner. This study will aid further efforts to develop highly potent and selective SIRT2 inhibitors for the treatment of cancer and other related diseases.
Novel SIRT2 protein inhibitor and usage thereof in pharmacy
-
Paragraph 0156; 0157, (2017/08/28)
The invention discloses a compound or salt, crystallographic form and solvate compounds of the compound acceptable in pharmacy, and the compound and the salt, crystallographic form, solvate compounds of the compound are shown as formula I, wherein X is selected from the formulas (please see the specifications for the formula); R1 is selected from aryl or ceteroary or substituted aryl or substituted ceteroary or from the formula (please see the specifications for the formula); R2 is selected from the formulas (please see the specifications for the formula); and R3 is selected from halogen or C1-C4 alkyl or C1-C4 alkoxy. The novel compound shown in formula I has the advantages that not only is good inhibitory activity achieved to SIRT2, but also the inhibiting effect is achieved to the tumor, and the novel compound has good pharmaceutical potentiality and provides a novel potential choice for the clinical medicament.