34861-81-9Relevant articles and documents
Regio- and Enantioselective Properties of the Lipase-catalyzed Irreversible Transesterification of Some 2-Substituted-1,4-Butanediols in Organic Solvents
Ferraboschi, Patrizia,Casati, Silvana,Verza, Elisa,Santaniello, Enzo
, p. 1027 - 1030 (1995)
The regioselectivity of the Pseudomonas fluorescens (P. cepacia) lipase (PFL)-catalyzed irreversible transesterification of 2-substituted-1,4-butanediols 1a-3a has been studied and, in the case of 3a, it has been shown that (R)- and (S)-diols are acylated
Photocatalytic acyl azolium-promoted alkoxycarbonylation of trifluoroborates
Scheidt, Karl A.,Zhu, Joshua L.
, (2021/06/28)
Despite recent advancements in the selective generation and coupling of organic radical species, the alkoxycarbonyl radical remains underexplored relative to other carbon-containing radical species. Drawing inspiration from new strategies for generating acyl radical equivalents utilizing dual N-heterocyclic carbene catalysis and photocatalysis, we have prepared dimethylimidazolium esters that can function as an alkoxycarbonyl radical surrogate under photocatalytic conditions. We demonstrate the synthetic utility of these azolium-based partners through the preparation of esters arising from the coupling of this radical surrogate with an oxidatively generated alkyl radical.
Palladium-Catalyzed Asymmetric Hydroesterification of α-Aryl Acrylic Acids to Chiral Substituted Succinates
Ji, Xiaolei,Shen, Chaoren,Tian, Xinxin,Dong, Kaiwu
supporting information, p. 8645 - 8649 (2021/10/25)
A palladium-catalyzed asymmetric hydroesterification of α-aryl acrylic acids with CO and alcohol was developed, preparing a variety of chiral α-substituted succinates in moderate yields with high ee values. The kinetic profile of the reaction progress revealed that the alkene substrate first underwent the hydroesterification followed by esterification with alcohol. The origin of the enantioselectivity was elucidated by density functional theory computation.
Synergetic Catalysis for One-pot Bis-alkoxycarbonylation of Terminal Alkynes over Pd/Xantphos?Al(OTf)3 Bi-functional Catalytic System
Guo, Wen-Di,Liu, Lei,Yang, Shu-Qing,Chen, Xiao-Chao,Lu, Yong,VO-Thanh, Giang,Liu, Ye
, p. 1376 - 1384 (2020/01/24)
Tandem bis-alkoxycarbonylation of alkynes allows for the preparation of 2-substituted succinates from alkynes and nucleophile alcohol via two successive alkoxycarbonylation with advantages of 100 % atomic economy and simplified one-pot operation. Herein, the one-pot tandem bis-alkoxycarbonylation of alkynes was accomplished over the bi-functional catalytic system containing Xantphos-modified Pd-complex and Lewis super-acid of Al(OTf)3. It was found that, via the synergetic catalysis, the involved Xantphos-modified Pd-complex was responsible for the activation of CO and the alkynes through coordination to Pd-center while Al(OTf)3 was in charge of the activation of the alcohol to facilitate the formation of [Pd?H]+ active species. The in situ high-pressure FT-IR analysis, coupled with 1H/13C NMR spectral characterizations, confirmed that the introduced Al(OTf)3 with intensive oxophilicity (via acid-base pair interaction) was able to activate nucleophilic MeOH to be a reliable proton-donor (i. e. hydride-source) to warrant the formation and stability of [Pd?H]+ species upon the oxidation of Pd0 by H+ (Pd0+H+→[PdII?H]+). Over the developed bi-functional catalytic system, the yields of the target diesters were obtained in the range of 36~86 % in this sequence with the wide substrate scope.
Diastereo- and Enantioselective Synthesis of Fluorine Motifs with Two Contiguous Stereogenic Centers
Ponra, Sudipta,Rabten, Wangchuk,Yang, Jianping,Wu, Haibo,Kerdphon, Sutthichat,Andersson, Pher G.
supporting information, p. 13878 - 13883 (2018/10/24)
The synthesis of chiral fluorine containing motifs, in particular, chiral fluorine molecules with two contiguous stereogenic centers, has attracted much interest in research due to the limited number of methods available for their preparation. Herein, we report an atom-economical and highly stereoselective synthesis of chiral fluorine molecules with two contiguous stereogenic centers via azabicyclo iridium-oxazoline-phosphine-catalyzed hydrogenation of readily available vinyl fluorides. Various aromatic, aliphatic, and heterocyclic systems with a variety of functional groups were found to be compatible with the reaction and provide the highly desirable product as single diastereomers with excellent enantioselectivities.
Co-catalysis over a bi-functional ligand-based Pd-catalyst for tandem bis-alkoxycarbonylation of terminal alkynes
Yang, Da,Liu, Huan,Wang, Dong-Liang,Luo, Zhoujie,Lu, Yong,Xia, Fei,Liu, Ye
, p. 2588 - 2595 (2018/06/11)
A bi-functional ligand (L1) containing a diphosphino fragment and sulfonic acid group (-SO3H) enabled PdCl2(MeCN)2 to efficiently catalyze the tandem bis-alkoxycarbonylation of terminal alkynes to produce aryl-/alkyl-substituted succinate (α,ω-diesters). It was found that the -SO3H incorporated in L1 indispensably assisted the Pd-catalyst in accomplishing this tandem reaction via intramolecular synergic effects. Co-catalysis over the L1-based Pd-catalyst was not due to the physical mixture of Xantphos and MeSO3H. In situ FTIR analysis verified that the formation and stability of Pd-H active species were facilitated by the presence of L1. The formation of stabilized diacylpalladium intermediate (F) was the critical driving force for the second-step methoxycarbonylation. DFT calculation was carried out to optimize the geometric structure of F, which indicated that the developed intramolecular O?H hydrogen bonds were an important structural feature to stabilize F. In addition, the L1-based Pd-catalyst could be recycled successfully for at least 3 runs in the ionic liquid [Bmim]NTf2 without obvious activity loss and detectable metal leaching.
Reprint of: Impact of the corrin framework of vitamin B12 on the electrochemical carbon-skeleton rearrangement in comparison to an imine/oxime planar ligand; tuning selectivity in 1,2-migration of a functional group by controlling electrolysis potential
Abe, Masaaki,Hisaeda, Yoshio,Pan, Ling,Shimakoshi, Hisashi,Tahara, Keishiro,Yamaguchi, Ryoko
, p. 438 - 443 (2017/10/23)
Among the coenzyme B12-dependent enzymes, methylmalonyl-CoA mutase (MMCM) catalyzes the carbon-skeleton rearrangement reaction between R-methylmalonyl-CoA and succinyl-CoA. Diethyl 2-bromomethyl-2-phenylmalonate, an alkyl bromide substrate having two different migrating groups (phenyl and carboxylic ester groups) on the β-carbon, was applied to the electrolysis mediated by a hydrophobic vitamin B12 model complex, heptamethyl cobyrinate perchlorate in this study. The electrolysis of the substrate at ? 1.0 V vs. Ag-AgCl by light irradiation afforded the simple reduced product (diethyl 2-methyl-2-phenylmalonate) and the phenyl migrated product (diethyl 2-benzyl-2-phenylmalonate), as well as the electrolysis of the substrate at ? 1.5 V vs. Ag-AgCl in the dark. The electrolysis of the substrate at ? 2.0 V vs. Ag-AgCl afforded the carboxylic ester migrated product (diethyl phenylsuccinate) as the major product. The selectivity for the migrating group was successfully tuned by controlling the electrolysis potential. We clarified that the cathodic chemistry of the Co(III) alkylated heptamethyl cobyrinate is critical for the selectivity of the migrating group through mechanistic investigations and comparisons to the simple vitamin B12 model complex, an imine/oxime-type cobalt complex.
Catalytic, Enantioselective β-Protonation through a Cooperative Activation Strategy
Wang, Michael H.,Barsoum, David,Schwamb, C. Benjamin,Cohen, Daniel T.,Goess, Brian C.,Riedrich, Matthias,Chan, Audrey,Maki, Brooks E.,Mishra, Rama K.,Scheidt, Karl A.
, p. 4689 - 4702 (2017/05/12)
The NHC-catalyzed transformation of unsaturated aldehydes into saturated esters through an organocatalytic homoenolate process has been thoroughly studied. Leveraging a unique “Umpolung”-mediated β-protonation, this process has evolved from a test bed for homoenolate reactivity to a broader platform for asymmetric catalysis. Inspired by our success in using the β-protonation process to generate enals from ynals with good E/Z selectivity, our early studies found that an asymmetric variation of this reaction was not only feasible, but also adaptable to a kinetic resolution of secondary alcohols through NHC-catalyzed acylation. In-depth analysis of this process determined that careful catalyst and solvent pairing is critical for optimal yield and selectivity; proper choice of nonpolar solvent provided improved yield through suppression of an oxidative side reaction, while employment of a cooperative catalytic approach through inclusion of a hydrogen bond donor cocatalyst significantly improved enantioselectivity.
Enantioselective β-Protonation by a Cooperative Catalysis Strategy
Wang, Michael H.,Cohen, Daniel T.,Schwamb, C. Benjamin,Mishra, Rama K.,Scheidt, Karl A.
, p. 5891 - 5894 (2015/05/27)
An enantioselective N-heterocyclic carbene (NHC)-catalyzed β-protonation through the orchestration of three distinct organocatalysts has been developed. This cooperative catalyst system enhances both yield and selectivity, compared to only the NHC-catalyz
Synthesis of α-aryl esters and nitriles: Deaminative coupling of α-aminoesters and α-aminoacetonitriles with arylboronic acids
Wu, Guojiao,Deng, Yifan,Wu, Chaoqiang,Zhang, Yan,Wang, Jianbo
supporting information, p. 10510 - 10514 (2016/02/18)
Transition-metal-free synthesis of α-aryl esters and nitriles using arylboronic acids with α-aminoesters and α-aminoacetonitriles, respectively, as the starting materials has been developed. The reaction represents a rare case of converting C(sp3)-N bonds into C(sp3)-C(sp2) bonds. The reaction conditions are mild, demonstrate good functional-group tolerance, and can be scaled up. Touch base: A transition-metal-free protocol for the synthesis of α-aryl esters and nitriles by deaminative coupling is presented. Strong bases and transition-metal catalysts are not needed. The new synthetic method uses readily available starting materials and demonstrates wide substrate scope.