374791-03-4Relevant articles and documents
PEPTIDOMIMETIC INHIBITORS OF THE WDR5-MLL INTERACTION
-
Paragraph 0240; 0244; 0245; 0246, (2018/12/13)
The present disclosure provides compounds represented by Formula I: and the pharmaceutically acceptable salts and solvates thereof, wherein R1, R2, R3a, R3b, R4a, R4b, R5a, and R5b are as defined as set forth in the specification. The present disclosure also provides compounds of Formula I for use to treat a condition, disease, or disorder responsive to inhibition of the WDR5 interaction with its binding partners including, but not limited to, the WDR5-MLL protein-protein interaction.
Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)-Mixed Lineage Leukemia (MLL) Protein-Protein Interaction
Karatas, Hacer,Li, Yangbing,Liu, Liu,Ji, Jiao,Lee, Shirley,Chen, Yong,Yang, Jiuling,Huang, Liyue,Bernard, Denzil,Xu, Jing,Townsend, Elizabeth C.,Cao, Fang,Ran, Xu,Li, Xiaoqin,Wen, Bo,Sun, Duxin,Stuckey, Jeanne A,Lei, Ming,Dou, Yali,Wang, Shaomeng
, p. 4818 - 4839 (2017/06/28)
We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5-mixed lineage leukemia (MLL) protein-protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value 50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis for their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5-MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.
Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2
Geistlinger, Timothy R.,Guy, R. Kiplin
, p. 6852 - 6853 (2007/10/03)
Nuclear hormone receptor (NR) signaling, currently a therapeutic target in multiple diseases, involves an ordered series of protein interactions to regulate transcription in response to changing hormone levels. Later steps in the process of ligand-dependent signaling are driven by a highly conserved interaction between the NRs and the steroid receptor coactivators (SRCs) that is effected by a conserved interaction motif (L1XXL2L3), known as an NR box. Using computational design and combinatorial chemistry, we have produced novel ∞-helical proteomimetics of the second NR box of SRC2 that exploit structural differences between human estrogen receptor ∞ (hER∞), human estrogen receptor β (hERβ), and human thyroid hormone receptor β (hTRβ). The resulting library sequentially replaced each leucine with non-natural side chains. Screening this library using a quantitative competition assay revealed compounds that selectively inhibit the interaction of SRC2-2 with each individual NR in preference to its interaction with the other NR. This approach generated highly selective compounds from one that had no specificity for a particular family member. These compounds represent the first family-member-selective competitive inhibitors of the protein interactions of transcription factors. Copyright