503315-72-8Relevant articles and documents
Regioselectivity and stereoselectivity of dioxygenase catalysed cis-dihydroxylation of mono- and tri-cyclic azaarene substrates
Boyd, Derek R.,Sharma, Narain D.,Coen, Gerard P.,Hempenstall, Francis,Ljubez, Vera,Malone, John F.,Allen, Christopher C. R.,Hamilton, John T. G.
experimental part, p. 3957 - 3966 (2009/06/27)
cis-Dihydrodiol metabolites were obtained from dioxygenase-catalysed asymmetric dihydroxylations of five monocyclic (azabiphenyl) and four tricyclic (azaphenanthrene) azaarene substrates. Enantiopurity values and absolute configuration assignments were determined using a combination of stereochemical correlation, X-ray crystallography and spectroscopy methods. The degree of regioselectivity found during cis-dihydroxylation of monocyclic azaarenes (2,3 bond >> 3,4 bond) and of tricyclic azaarenes (bay region > non-bay region bonds) was dependent on the type of dioxygenase used. The cis-dihydrodiol metabolite from an azaarene (3-phenylpyridine) was utilised in the chemoenzymatic synthesis of the corresponding trans-dihydrodiol. The 2008 Royal Society of Chemistry.
Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes.
Shindo,Ohnishi,Chun,Takahashi,Hayashi,Saito,Iguchi,Furukawa,Harayama,Horinouchi,Misawa
, p. 2472 - 2481 (2007/10/03)
Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived from the marine bacterium Nocardioides sp. strain KP7 converted all of these tricyclic aromatic compounds, while E. coli carrying the Pseudomonas putida F1 toluene dioxygenase (todC1C2BA) genes or the P. pseudoalcaligenes KF707 biphenyl dioxygenase (bphA1A2A3A4) genes was not able to convert these substrates. Surprisingly, E. coli carrying hybrid dioxygenase (todC1::bphA2A3A4) genes with a subunit substitution between the toluene and biphenyl dioxygenases was able to convert fluorene, dibenzofuran, and dibenzothiophene. The cells of a Streptomyces lividans transformant carrying the phenanthrene dioxygenase genes were also evaluated for bioconversion of various tricyclic fused aromatic compounds. The ability of this actinomycete in their conversion was similar to that of E. coli carrying the corresponding genes. Products converted from the aromatic compounds with these recombinant bacterial cells were purified by column chromatography on silica gel, and identified by their MS and 1H and 13C NMR analyses. Several products, e.g., 4-hydroxyfluorene converted from fluorene, and cis-1,2-dihydroxy-1,2-dihydrophenanthridine, cis-9,10-dihydroxy-9,10-dihydrophenanthridine, and 10-hydroxyphenanthridine, which were converted from phenanthridine, were novel compounds.