547740-43-2Relevant articles and documents
BIARYL DERIVATIVE AS GPR120 AGONIST
-
Paragraph 0512, (2017/11/17)
The present invention relates to a biaryl derivative expressed by the chemical formula 1, a method for producing the biaryl derivative, a pharmaceutical composition comprising same, and use of same, the biaryl derivative expressed by the chemical formula 1, as a GPR120 agonist, promoting GLP-1 generation in the gastro-intestinal tract, reducing insulin resistance in the liver, muscles and the like from anti-inflammatory activity in the macrophage, pancreatic cells and the like, and allowing effective use in prevention or treatment of inflammation or metabolic diseases such as diabetes, complications from diabetes, obesity, non-alcoholic fatty liver disease, fatty liver disease, and osteoporosis.
CHEMOKING RECEPTOR ANTAGONISTS
-
Page/Page column 144-145, (2013/03/26)
Disclosed herein are chemokine receptor antagonists of formula (I) wherein G1, X1, X2, and X3 are as defined in the specification. Compositions comprising such compounds; and methods for treating conditions and disorders using such compounds and compositions are also described.
Ligand self-assembling through complementary hydrogen-bonding in the coordination sphere of a transition metal center: The 6- diphenylphosphanylpyridin-2(1H)-one system
Gellrich, Urs,Huang, Jing,Seiche, Wolfgang,Keller, Manfred,Meuwly, Markus,Breit, Bernhard
experimental part, p. 964 - 975 (2011/04/16)
Motivated by previous findings which had shown that transition metal catalysts based on the 6-diphenylphosphanylpyridone ligand (6-DPPon, 2) display properties as a self-assembling bidentate ligand-metal complex, we have performed a thorough study on the bonding situation of this ligand, alone and in the coordination sphere of a late transition metal. Thus, combining a number of spectroscopic methods (UV-vis, IR, NMR, X-ray), we gained insights into the unique structural characteristics of 2. These experimental studies were corroborated by DFT calculations, which were in all cases in good agreement with the experimental results. The free ligand 2 prefers to exist as the pyridone tautomer 2A and dimerizes to the pyridone-pyridone dimer 4A in solution as well as in the crystal state. The corresponding hydroxypyridine tautomer 2B is energetically slightly disfavored (ca. 0.9 kcal/mol within the up-conformer relevant for metal coordination); hence, hydrogen bond formation within the complex may easily compensate this small energy penalty. Coordination properties of 2 were studied in the coordination sphere of a platinum(II) center. As a model complex, [Cl2Pt(6-DPPon)2] (II) was prepared and investigated. All experimental and theoretical methods used prove the existence of a hydrogenbonding interligand network in solution as well as in the crystal state of 11 between one 6-DPPon ligand existing as the pyridone tautomer 2A and the other ligand occupying the complementary hydroxypyridine form 2B. Dynamic proton NMR allowed to determine the barrier for interligand hydrogen bond breaking and, in combination with theory, enabled us to determine the enthalpic stabilization through hydrogen-bonding to contribute 14-15 kcal/mol.
The AZARYPHOS family of ligands for ambifunctional catalysis: Syntheses and use in ruthenium-catalyzed anti-markovnikov hydration of terminal alkynes
Hintermann, Lukas,Dang, Tuan Thanh,Labonne, Aurelie.,Kribber, Thomas,Xiao, Li,Naumov, Pance
supporting information; experimental part, p. 7167 - 7179 (2010/02/28)
The family of AZARYPHOS (aza-aryl-phosphane) phosphane ligands, containing a phosphine unit and sterically shielded nitrogen lone pairs in the ligand periphery, is introduced as a tool for developing ambifunctional catalysis by the metal center and nitrogen lone pairs in the ligand sphere. General synthetic strategies have been developed to synthesize over 25 examples of structurally diverse (6-aryl-2pyridyl)phosphanes (ARPYPHOS), (6alkyl-2-pyridyl)phosphanes (ALPY-PHOS), 4,6-disubsituted l,3-diazin-2ylphosphanes or l,3,5-triazin-2- ylphosphanes, quinazolinylphosphanes, quinolinylphosphanes, and others. The scalable syntheses proceed in a few steps. The incorporation of AZARYPHOS ligands (L) into complexes [RuCp(L)2(MeCN)][PF6] (Cp = cyclopentadieny1)gives catalysts for the anti-Markovnikov hydration of terminal alkynes of the highest known activities. Electronic and steric ligand effects modulate the reaction kinetics over a range of two orders of magnitude. These results highlight the importance of using structurally diverse ligand families in the process of developing cooperative ambifunctional catalysis by a metal and its ligand.
Hydrogen bonding as a construction element for bidentate donor ligands in homogeneous catalysis: Regioselective hydroformylation of terminal alkenes
Breit, Bernhard,Seiche, Wolfgang
, p. 6608 - 6609 (2007/10/03)
A new concept for the construction of bidentate ligands for homogeneous metal complex catalysis is described. The concept relies on the self-assembly of monodentate ligands through hydrogen bonding. As a prototype of such systems, 6-diphenylphosphanyl-2-pyridone (6-DPPon) was shown to form a chelate in the coordination sphere of a transition metal center through unusual pyridone/hydroxypyridine hydrogen bonding (X-ray). This hydrogen bonding stays intact in a catalytic reaction as proven upon highly regioselective hydroformylation of terminal alkenes. Regioselectivities and reactivities observed rank the 6-DPPon/rhodium system among the most active and regioselective catalysts for n-selective hydroformylation of terminal alkenes. Copyright