557-27-7Relevant articles and documents
Iron-mediated coupling of carbon dioxide and ethylene: Macrocyclic metallalactones enable access to various carboxylates
Rummelt, Stephan M.,Zhong, Hongyu,Korobkov, Ilia,Chirik, Paul J.
supporting information, p. 11589 - 11593 (2018/09/29)
Treatment of (iPrPDI)Fe(N2)2 (iPrPDI, 2,6-(2,6-iPr2C6H3Na? CMe)2C5H3N) with CO2 and ethylene resulted in the formation of a homologous series of saturated and unsaturated iron carboxylate products, (iPrPDI)Fe(O2CR), the distribution of which depends on the ratio of the reagents. The solid-state and electronic structures of a saturated product, (iPrPDI)Fe(O2CC2H5), were elucidated. Product distributions, deuterium labeling studies, and stoichiometric experiments support initial formation of a five-membered metallalactone intermediate, which undergoes subsequent ethylene insertions to generate macrocyclic metallalactones. Competitive β-hydride elimination, CO2 insertion, or reaction with H2 determines the fate of the metallalactone, the latter accounting for formation of iron complexes with saturated carboxylates. Similar reactivity was observed upon addition of propiolactone and ethylene to (iPrPDI)Fe(N2)2, supporting C-O oxidative addition and C-C bond formation through metallacycle intermediates.
Metal carboxylate salts
-
Page/Page column 2, (2008/06/13)
A dietary source of mineral in the form of a metal carboxylate is prepared using the acid-base-like reaction. A salt of a carboxylate anion and a by-product cation is reacted in aqueous solution with a salt of a metal cation and a by-product anion under conditions which form a metal carboxylate and the by-product salt. Solutions formed in the reaction may be applied directly to a dry carrier to produce a dry dietary supplement or, alternatively, the solutions may be filtered to remove precipitated by-product salt and the filtrate used as a liquid dietary supplement. Preferably, a reducing agent, such as ascorbic acid, is added to help prevent the oxidation of divalent to trivalent form of a metal salt, when an easily oxidized divalent metal is used as starting material.