59347-91-0Relevant articles and documents
Enantioselective Intermolecular C-H Amination Directed by a Chiral Cation
Fanourakis, Alexander,Paterson, Kieran J.,Phipps, Robert J.,Williams, Benjamin D.
, p. 10070 - 10076 (2021/07/21)
The enantioselective amination of C(sp3)-H bonds is a powerful synthetic transformation yet highly challenging to achieve in an intermolecular sense. We have developed a family of anionic variants of the best-in-class catalyst for Rh-catalyzed C-H amination, Rh2(esp)2, with which we have associated chiral cations derived from quaternized cinchona alkaloids. These ion-paired catalysts enable high levels of enantioselectivity to be achieved in the benzylic C-H amination of substrates bearing pendant hydroxyl groups. Additionally, the quinoline of the chiral cation appears to engage in axial ligation to the rhodium complex, providing improved yields of product versus Rh2(esp)2 and highlighting the dual role that the cation is playing. These results underline the potential of using chiral cations to control enantioselectivity in challenging transition-metal-catalyzed transformations.
Zinc-Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2-Aryl-Substituted Pyrrolidines as Pharmaceutical Building Blocks
W?glarz, Izabela,Michalak, Karol,Mlynarski, Jacek
supporting information, p. 1317 - 1321 (2020/12/09)
The first successful enantioselective hydrosilylation of cyclic imines promoted by a chiral zinc complex is reported. In situ generated zinc-ProPhenol complex with silane afforded pharmaceutically relevant enantioenriched 2-aryl-substituted pyrrolidines in high yields and with excellent enantioselectivities (up to 99% ee). The synthetic utility of presented methodology is demonstrated in an efficient synthesis of the corresponding chiral cyclic amines, being pharmaceutical drug precursors to the Aticaprant and Larotrectinib. (Figure presented.).
Enantioselective Synthesis of 2-Substituted Pyrrolidines via Intramolecular Reductive Amination
Chang, Mingxin,Guo, Haodong,Huang, Haizhou,Zhang, Tao,Zhao, Wenlei,Zhou, Huan
, p. 2713 - 2719 (2019/06/19)
Catalyzed by the complex generated in situ from iridium and the chiral ferrocene ligand, tert -butyl (4-oxo-4-arylbutyl)carbamate substrates were deprotected and then reductively cyclised to form 2-substituted arylpyrrolidines in a one-pot manner, in which the intramolecular reductive amination was the key step. A range of chiral 2-substituted arylpyrrolidines were synthesised in up to 98percent yield and 92percent ee.
Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes
Wu, Shuke,Zhou, Yi,Rebelein, Johannes G.,Kuhn, Miriam,Mallin, Hendrik,Zhao, Jingming,Igareta, Nico V.,Ward, Thomas R.
supporting information, p. 15869 - 15878 (2019/10/11)
The biotin-streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17 ?000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.
Sequence-Based In-silico Discovery, Characterisation, and Biocatalytic Application of a Set of Imine Reductases
Velikogne, Stefan,Resch, Verena,Dertnig, Carina,Schrittwieser, Joerg H.,Kroutil, Wolfgang
, p. 3236 - 3246 (2018/08/03)
Imine reductases (IREDs) have recently become a primary focus of research in biocatalysis, complementing other classes of amine-forming enzymes such as transaminases and amine dehydrogenases. Following in the footsteps of other research groups, we have established a set of IRED biocatalysts by sequence-based in silico enzyme discovery. In this study, we present basic characterisation data for these novel IREDs and explore their activity and stereoselectivity using a panel of structurally diverse cyclic imines as substrates. Specific activities of >1 U/mg and excellent stereoselectivities (ee>99 %) were observed in many cases, and the enzymes proved surprisingly tolerant towards elevated substrate loadings. Co-expression of the IREDs with an alcohol dehydrogenase for cofactor regeneration led to whole-cell biocatalysts capable of efficiently reducing imines at 100 mM initial concentration with no need for the addition of extracellular nicotinamide cofactor. Preparative biotransformations on gram scale using these ‘designer cells’ afforded chiral amines in good yield and excellent optical purity.
Directed Evolution of an Artificial Imine Reductase
Hestericová, Martina,Heinisch, Tillman,Alonso-Cotchico, Lur,Maréchal, Jean-Didier,Vidossich, Pietro,Ward, Thomas R.
supporting information, p. 1863 - 1868 (2018/01/27)
Artificial metalloenzymes, resulting from incorporation of a metal cofactor within a host protein, have received increasing attention in the last decade. The directed evolution is presented of an artificial transfer hydrogenase (ATHase) based on the biotin-streptavidin technology using a straightforward procedure allowing screening in cell-free extracts. Two streptavidin isoforms were yielded with improved catalytic activity and selectivity for the reduction of cyclic imines. The evolved ATHases were stable under biphasic catalytic conditions. The X-ray structure analysis reveals that introducing bulky residues within the active site results in flexibility changes of the cofactor, thus increasing exposure of the metal to the protein surface and leading to a reversal of enantioselectivity. This hypothesis was confirmed by a multiscale approach based mostly on molecular dynamics and protein–ligand dockings.
Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm
Zhao, Jingming,Rebelein, Johannes G.,Mallin, Hendrik,Trindler, Christian,Pellizzoni, Michela M.,Ward, Thomas R.
supporting information, p. 13171 - 13175 (2018/10/23)
Artificial metalloenzymes (ArMs), which combine an abiotic metal cofactor with a protein scaffold, catalyze various synthetically useful transformations. To complement the natural enzymes' repertoire, effective optimization protocols to improve ArM's performance are required. Here we report on our efforts to optimize the activity of an artificial transfer hydrogenase (ATHase) using Escherichia coli whole cells. For this purpose, we rely on a self-immolative quinolinium substrate which, upon reduction, releases fluorescent umbelliferone, thus allowing efficient screening. Introduction of a loop in the immediate proximity of the Ir-cofactor afforded an ArM with up to 5-fold increase in transfer hydrogenation activity compared to the wild-type ATHase using purified mutants.
Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective hydrogenation of cyclic imines
Zhang, Ying,Kong, Duanyang,Wang, Rui,Hou, Guohua
, p. 3006 - 3012 (2017/04/11)
A highly enantioselective hydrogenation of cyclic imines for synthesis of chiral cyclic amines has been realized. With the complex of iridium and (R,R)-f-spiroPhos as the catalyst, a range of cyclic 2-aryl imines were smoothly hydrogenated under mild conditions without any additive to provide the corresponding chiral cyclic amines with excellent enantioselectivities of up to 98% ee. Moreover, this method could be successfully applied to the synthesis of (+)-(6S,10bR)-McN-4612-Z.
Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from Amycolatopsis orientalis
Aleku, Godwin A.,Man, Henry,France, Scott P.,Leipold, Friedemann,Hussain, Shahed,Toca-Gonzalez, Laura,Marchington, Rebecca,Hart, Sam,Turkenburg, Johan P.,Grogan, Gideon,Turner, Nicholas J.
, p. 3880 - 3889 (2016/07/06)
The imine reductase AoIRED from Amycolatopsis orientalis (Uniprot R4SNK4) catalyzes the NADPH-dependent reduction of a wide range of prochiral imines and iminium ions, predominantly with (S)-selectivity and with ee's of up to >99%. AoIRED displays up to 100-fold greater catalytic efficiency for 2-methyl-1-pyrroline (2MPN) compared to other IREDs, such as the enzyme from Streptomyces sp. GF3546, which also exhibits (S)-selectivity, and thus, AoIRED is an interesting candidate for preparative synthesis. AoIRED exhibits unusual catalytic properties, with inversion of stereoselectivity observed between structurally similar substrates, and also, in the case of 1-methyl-3,4-dihydroisoquinoline, for the same substrate, dependent on the age of the enzyme after purification. The structure of AoIRED has been determined in an "open" apo-form, revealing a canonical dimeric IRED fold in which the active site is formed between the N- and C-terminal domains of participating monomers. Co-crystallization with NADPH gave a "closed" form in complex with the cofactor, in which a relative closure of domains, and associated loop movements, has resulted in a much smaller active site. A ternary complex was also obtained by cocrystallization with NADPH and 1-methyl-1,2,3,4-tetrahydroisoquinoline [(MTQ], and it reveals a binding site for the (R)-amine product, which places the chiral carbon within 4 ? of the putative location of the C4 atom of NADPH that delivers hydride to the C? -N bond of the substrate. The ternary complex has permitted structure-informed mutation of the active site, resulting in mutants including Y179A, Y179F, and N241A, of altered activity and stereoselectivity.