5959-80-8Relevant articles and documents
UR-DEBa176: A 2,4-Diaminopyrimidine-Type Radioligand Enabling Binding Studies at the Human, Mouse, and Rat Histamine H4 Receptors
Bartole, Edith,Littmann, Timo,Tanaka, Miho,Ozawa, Takeaki,Buschauer, Armin,Bernhardt, Günther
supporting information, p. 8338 - 8356 (2019/10/11)
Differences in sequence homology between human (h), mouse (m), and rat (r) histamine H4 receptors (H4R) cause discrepancies regarding affinities, potencies, and/or efficacies of ligands and therefore compromise translational animal models and the applicability of radioligands. Aiming at a radioligand enabling robust and comparative binding studies at the h/m/rH4Rs, 2,4-diaminopyrimidines were synthesized and pharmacologically investigated. The most notable compounds identified were two (partial) agonists with comparable potencies at the h/m/rH4Rs: UR-DEBa148 (N-neopentyl-4-(1,4,6,7-tetrahydro-5H-imidazo[4,5-c]pyridin-5-yl)pyrimidin-2-amine bis(2,2,2-trifluoroacetate), 43), the most potent [pEC50 (reporter gene assay) = 9.9/9.6/10.3] compound in the series being slightly G-protein biased and UR-DEBa176 [(R)-4-[3-(dimethylamino)pyrrolidin-1-yl]-N-neopentylpyrimidin-2-amine bis(2,2,2-trifluoroacetate), 46, pEC50 (reporter gene assay) = 8.7/9.0/9.2], a potential "cold" form of a tritiated H4R ligand. After radiolabeling, binding studies with [3H]UR-DEBa176 ([3H]46) at the h/m/rH4Rs revealed comparable Kd values (41/17/22 nM), low nonspecific binding (11-17%, aKd), and fast associations/dissociations (25-30 min) and disclosed [3H]UR-DEBa176 as useful molecular tool to determine h/m/rH4R binding affinities for H4R ligands.
PRMT5 INHIBITORS AND USES THEREOF
-
Paragraph 00480, (2016/01/12)
Described herein are compounds of Formula (I)-(XIII), pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof. Compounds of the present invention are useful for inhibiting PRMT5 activity. Methods of using the compounds for treating PRMT5-mediated disorders are also described.
Copper(I) and copper(II) complexes possessing cross-linked imidazole-phenol ligands: Structures and dioxygen reactivity
Kamaraj, Kaliappan,Kim, Eunsuk,Galliker, Benedikt,Zakharov, Lev N.,Rheingold, Arnold L.,Zuberbuehler, Andreas D.,Karlin, Kenneth D.
, p. 6028 - 6029 (2007/10/03)
Catalytic reduction of O2 to H2O, and coupling to membrane proton translocation, occurs at the heterobinuclear heme a3-CuB active site of cytochrome c oxidase. One of the CuB ligated histidines is cross-linked to a neighboring tyrosine (C-N bond; tyrosine C6 and histidine ε-nitrogen), and the protic residue of this cross-linked His-Tyr moiety is proposed to participate as both an electron and a proton donor in the catalytic dioxygen reduction event. To provide insight into the chemistry of such a moiety, we have synthesized and characterized tetra- and tridentate pyridylalkylamine chelate ligands {LN4OR and LN3OR (R = H or Me)}, which include an imidazole-phenol (or anisole) cross-link and their copper(I/II) complexes. [CuI(LN4OH)]B(C6F5)4 (1) reacts with dioxygen at -80 °C in THF, forming an unstable trans-μ-1,2-peroxodicopper(II)complex, which subsequently converts to a dimeric copper(II)-phenolate complex [{Cu(LN4O-)}2](B(C6F5)4)2 (5a). The close analogue [CuI(LN4OMe)]B(C6F5)4 (3) binds dioxygen reversibly at -80 °C in tetrahydrofuran. Stopped-flow kinetics of the reaction [CuI(LN3OH)]ClO4 (2) with O2 in CH2Cl2 indicate a steady formation of the purple dimeric product [{Cu(LN3O-)}2](ClO4)2 (5b), which has been analyzed in the temperature range from -40 to +20 °C, ΔH? = -9.6 (6) kJ mol-1, ΔS? = -168 (2) J mol-1 K-1 (k(-40°C) = 1.05(4) × 106 and k(+20°C) = 4.6(2) × 105 M-2 s-1). The X-ray crystal structures of 1, [CuII(LN3OH)(MeOH)(OClO3-)](ClO4) (4), 5a, and 5b are reported. Copyright