65031-96-1Relevant articles and documents
Dinuclear salen cobalt complex incorporating Y(OTf)3: enhanced enantioselectivity in the hydrolytic kinetic resolution of epoxides
Patel, Deepak,Kurrey, Ganesh Ram,Shinde, Sandip S.,Kumar, Pradeep,Kim, Geon-Joong,Thakur, Santosh Singh
, p. 82699 - 82703 (2015/10/19)
The activation of inactive Jacobsen's chiral salen Co(ii) (salen = N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) compound is attained by dinuclear chiral salen Co(iii)-OTf complex formation with yttrium triflate. The yttrium metal not only displays a promoting effect on electron transfer, but also assists in forming two stereocentres of a Lewis acid complex with Co(iii)-OTf. We found that the binuclear Co-complex significantly enhanced reactivity and enantioselectivity in the hydrolytic kinetic resolution of terminal epoxides compared to its analogous monomer and kinetic data are also consistent with these results.
Stereoselective synthesis of (R)-glycidyl butyrate from racemic glycidyl butyrate or epichlorohydrin via hydrolytic kinetic resolution
Jiang, Chengjun,Yan, Jianbo
scheme or table, p. 242 - 243 (2012/05/19)
The differences of (R)-glycidyl butyrate synthesis via hydrolytic kinetic resolution of glycidyl butyrate directly or regioselective opening epichlorohydrin as key steps by using Jacobsen's hydrotic kinetic resolution are compared. In the view of separation problem, it is hard to get the pure (R)-glycidyl butyrate by kinetic resolution of glycidyl butyrate directly. Via kinetic resolution of epichlorohydrin, treatment with butyric acid in the presence of CrCl3 and then epoxidation with NaOH, the total yield of 38.5% and optical purity of 99% are obtained.
A new dinuclear chiral salen complexes for asymmetric ring opening and closing reactions: Synthesis of valuable chiral intermediates
Thakur, Santosh Singh,Chen, Shu-Wei,Li, Wenji,Shin, Chang-Kyo,Kim, Seong-Jin,Koo, Yoon-Mo,Kim, Geon-Joong
, p. 1862 - 1872 (2007/10/03)
A new dinuclear chiral Co(salen) complexes bearing group 13 metals have been synthesized and characterized. The easily prepared complexes exhibited very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides with H2O, chloride ions and carboxylic acids and consequently provide enantiomerically enriched terminal epoxides (>99% ee). It also catalyzes the asymmetric cyclization of ring opened product, to prepare optically pure terminal epoxides in one step. The homogeneous dinuclear chiral Co(salen) have been covalently immobilized on MCM-41. The potential benefits of heterogenization include facilitation of catalyst separation and recyclability requiring very simple techniques. The system described is very efficient.