676267-06-4Relevant articles and documents
Modular counter-Fischer?indole synthesis through radical-enolate coupling
Chung, Hyunho,Kim, Jeongyun,Gonzalez-Montiel, Gisela A.,Cheong, Paul Ha-Yeon,Lee, Hong Geun
supporting information, p. 1096 - 1102 (2021/01/26)
A single-electron transfer mediated modular indole formation reaction from a 2-iodoaniline derivative and a ketone has been developed. This transition-metal-free reaction shows a broad substrate scope and unconventional regioselectivity trends. Moreover, important functional groups for further transformation are tolerated under the reaction conditions. Density functional theory studies reveal that the reaction proceeds by metal coordination, which converts a disfavored 5-endo-trig cyclization to an accessible 7-endo-trig process.
5, 10-dihydroindolo [3, 2-b] indole derivative and synthesis method and application thereof
-
Paragraph 0190; 0192-0193, (2021/07/17)
The invention discloses a synthesis method of a 5, 10-dihydroindolo [3, 2-b] indole derivative, the method comprises the following steps: mixing a 2-((2-halogen phenyl) ethynyl)-N, N-dimethylaniline derivative (II), N, N-di-tert-butyl diazacycloketone (III), a palladium catalyst, a monophosphine ligand, alkali and a first organic solvent, and carrying out a diamidation reaction under the protection of inert gas to realize the synthesis of the 5, 10-dihydroindolo [3, 2-b] indole derivative(I). The method is easy to operate, mild in reaction condition and high in reaction yield, and the synthesized 5, 10-dihydroindolo [3, 2-b] indole derivative can be used for preparing an organic light-emitting device.
Remarkable switch in the regiochemistry of the iodination of anilines by N-iodosuccinimide: Synthesis of 1,2-dichloro-3,4-diiodobenzene
Shen, Hao,Vollhardt, K. Peter C.
supporting information; experimental part, p. 208 - 214 (2012/03/11)
Direct iodination of anilines by NIS in polar solvents (such as DMSO) affords p-iodinated products with up to >99% regioselectivity. Switching to less polar solvents (such as benzene) in the presence of AcOH inverts this outcome toward dramatically increased or preferential generation of the o-isomers, also with up to >99% regioselectivity. This finding was exploited in the synthesis of 1,2-dichloro-3,4-diiodobenzene. Georg Thieme Verlag Stuttgart - New York.