721385-17-7Relevant articles and documents
Engineered Aminotransferase for the Production of d-Phenylalanine Derivatives Using Biocatalytic Cascades
Walton, Curtis J. W.,Parmeggiani, Fabio,Barber, Janet E. B.,McCann, Jenna L.,Turner, Nicholas J.,Chica, Roberto A.
, p. 470 - 474 (2017/12/15)
d-Phenylalanine derivatives are valuable chiral building blocks for a wide range of pharmaceuticals. Here, we developed stereoinversion and deracemization biocatalytic cascades to synthesize d-phenylalanine derivatives that contain electron-donating or -withdrawing substituents of various sizes and at different positions on the phenyl ring with a high enantiomeric excess (90 to >99 % ee) from commercially available racemic mixtures or l-amino acids. These whole-cell systems couple Proteus mirabilis l-amino acid deaminase with an engineered aminotransferase that displays native-like activity towards d-phenylalanine, which we generated from Bacillus sp. YM-1 d-amino acid aminotransferase. Our cascades are applicable to preparative-scale synthesis and do not require cofactor-regeneration systems or chemical reducing agents.
Single-Biocatalyst Synthesis of Enantiopure d-Arylalanines Exploiting an Engineered d-Amino Acid Dehydrogenase
Parmeggiani, Fabio,Ahmed, Syed T.,Thompson, Matthew P.,Weise, Nicholas J.,Galman, James L.,Gahloth, Deepankar,Dunstan, Mark S.,Leys, David,Turner, Nicholas J.
, p. 3298 - 3306 (2016/10/20)
A practical and efficient biocatalytic synthesis of aromatic d-amino acids has been developed, based on the reductive amination of the corresponding α-keto acids via a recombinant whole cell system composed of an engineered dehydrogenase and cofactor recycling apparatus. The reaction was shown to give excellent enantioselectivity (≥98%) and good yields at the preparative scale across a broad range of substrates. Additionally, the structure of the variant enzyme was solved to allow rationalisation of the observed reaction rates. The engineered whole cell catalyst was also used to mediate the production of d-phenylalanine derivatives from racemic mixtures and cheaper l-amino acids by combining it with an enantiocomplementary deaminase. (Figure presented.).
Phenylalanine aminomutase-catalyzed addition of ammonia to substituted cinnamic acids: A route to enantiopure α- and β-amino acids
Szymanski, Wiktor,Wu, Bian,Weiner, Barbara,De Wildeman, Stefaan,Feringa, Ben L.,Janssen, Dick B.
supporting information; experimental part, p. 9152 - 9157 (2010/03/01)
(Chemical Equation Presented) An approach is described for the synthesis of aromatic α- and β-amino acids that uses phenylalanine aminomutase to catalyze a highly enantioselective addition of ammonia to substituted cinnamic acids. The reaction has a broad scope and yields substituted α- and β-phenylalanines with excellent enantiomeric excess. The regioselectivity of the conversion is determined by substituents present at the aromatic ring. A box model for the enzyme active site is proposed, derived from the influence of the hydrophobicity of substituents on the enzyme affinity toward various substrates.
Analogues of 8-D-homoarginine vasopressin
-
, (2008/06/13)
Analogues of 8-D-homoarginine vasopressin were prepared with the general formula STR1 where X is L-O-methyltyrosine, L-p-ethylphenylalanine, D-p-ethylphenylalanine, L-p-methylphenylalanine or D-methylphenylalanine and R is cysteine or β-mercaptopropionic acid. These vasopressin analogues exhibited an increased affinity to uterus receptors for oxytocin, where they acted as ocytocin antagonists. Moreover, the analogues of deamino vasopressin have a significantly reduced antidiuretic activity in comparison with [8-D-arginine]vasopressin.