85237-67-8Relevant articles and documents
Enzyme Cascades in Whole Cells for the Synthesis of Chiral Cyclic Amines
Hepworth, Lorna J.,France, Scott P.,Hussain, Shahed,Both, Peter,Turner, Nicholas J.,Flitsch, Sabine L.
, p. 2920 - 2925 (2017/05/31)
The increasing diversity of reactions mediated by biocatalysts has led to development of multistep in vitro enzyme cascades, taking advantage of generally compatible reaction conditions. The construction of pathways within single whole cell systems is much less explored, yet has many advantages. Herein we report the generation of a successful whole cell de novo enzyme cascade for the diastereoselective and/or enantioselective conversion of simple, linear keto acids into valuable cyclic amine products. The pathway starts with carboxylic acid reduction that triggers a transamination, imine formation, and subsequent imine reduction. Construction and optimization of the system was achieved by standard genetic manipulation and the cascade required only starting material, amine donor, and whole cell catalyst with cofactors provided internally by glucose metabolism. A panel of synthetic keto acids provided access to piperidines in high conversions (up to 93%) and enantiomeric excess (up to 93%).
One-Pot Cascade Synthesis of Mono- and Disubstituted Piperidines and Pyrrolidines using Carboxylic Acid Reductase (CAR), ω-Transaminase (ω-TA), and Imine Reductase (IRED) Biocatalysts
France, Scott P.,Hussain, Shahed,Hill, Andrew M.,Hepworth, Lorna J.,Howard, Roger M.,Mulholland, Keith R.,Flitsch, Sabine L.,Turner, Nicholas J.
, p. 3753 - 3759 (2016/07/06)
Access to enantiomerically pure chiral mono- and disubstituted piperidines and pyrrolidines has been achieved using a biocatalytic cascade involving carboxylic acid reductase (CAR), ω-transaminase (ω-TA), and imine reductase (IRED) enzymes. Starting from keto acids or keto aldehydes, substituted piperidine or pyrrolidine frameworks can be generated in high conversion, ee, and de in one pot, with each biocatalyst exhibiting chemo-, regio-, and/or stereoselectivity during catalysis. The study also includes a systematic investigation of the effect of the position of a methyl group ring substituent on the IRED-catalyzed reduction of a chiral imine. Analysis of the selectivity observed in these reactions revealed an interesting balance between substrate versus enzyme control; the configurations of the products obtained were rationalized on the basis of minimizing 1,3- or 1,2-steric interactions with incoming NADPH.