883528-25-4Relevant articles and documents
Structure-Activity Relationship for the Picolinamide Antibacterials that Selectively Target Clostridioides difficile
Speri, Enrico,Qian, Yuanyuan,Janardhanan, Jeshina,Masitas, Cesar,Lastochkin, Elena,De Benedetti, Stefania,Wang, Man,Schroeder, Valerie A.,Wolter, William R.,Oliver, Allen G.,Fisher, Jed F.,Mobashery, Shahriar,Chang, Mayland
, p. 991 - 995 (2021/05/27)
Clostridioides difficile is a leading health threat. This pathogen initiates intestinal infections during gut microbiota dysbiosis caused by oral administration of antibiotics. C. difficile is difficult to eradicate due to its ability to form spores, which are not susceptible to antibiotics. To address the urgent need for treating recurrent C. difficile infection, antibiotics that selectively target C. difficile over common gut microbiota are needed. We herein describe the class of picolinamide antibacterials which show potent and selective activity against C. difficile. The structure-activity relationship of 108 analogues of isonicotinamide 4, a compound that is equally active against methicillin-resistant Staphylococcus aureus and C. difficile, was investigated. Introduction of the picolinamide core as exemplified by analogue 87 resulted in exquisite potency and selectivity against C. difficile. The ability of the picolinamide class to selectively target C. difficile and to prevent gut dysbiosis holds promise for the treatment of recurrent C. difficile infection.
Discovering novel chemical inhibitors of human cyclophilin A: Virtual screening, synthesis, and bioassay
Li, Jian,Chen, Jing,Gui, Chunshan,Zhang, Li,Qin, Yu,Xu, Qiang,Zhang, Jian,Liu, Hong,Shen, Xu,Jiang, Hualiang
, p. 2209 - 2224 (2007/10/03)
Cyclophilin A (CypA) is a member of cyclophilins, a family of the highly homologous peptidyl prolyl cis-trans isomerases (PPIases), which can bind to cyclosporin A (CsA). CypA plays critical roles in various biological processes, including protein folding, assembly, transportation, regulation of neuron growth, and HIV replication. The discovery of CypA inhibitor is now of a great special interest in the treatment of immunological disorders. In this study, a series of novel small molecular CypA inhibitors have been discovered by using structure-based virtual screening in conjunction with chemical synthesis and bioassay. The SPECS_1 database containing 85,000 small molecular compounds was searched by virtual screening against the crystal structure of human CypA. After SPR-based binding affinity assay, 15 compounds were found to show binding affinities to CypA at submicro-molar or micro-molar level (compounds 1-15). Seven compounds were selected as the starting point for the further structure modification in considering binding activity, synthesis difficulty, and structure similarity. We thus synthesized 40 new small molecular compounds (1-6, 15, 16a-q, 17a-d, and 18a-l), and four of which (compounds 16b, 16h, 16k, and 18g) showed high CypA PPIase inhibition activities with IC50s of 2.5-6.2 μM. Pharmacological assay indicated that these four compounds demonstrated somewhat inhibition activities against the proliferation of spleen cells.
2-AMINOQUINAZOLINE DERIVATIVES
-
Page/Page column 94, (2008/06/13)
2-Aminoquinazoline derivatives represented by the general formula (I) or pharmacologically acceptable salts thereof: (I) wherein R1 and R2 are each independently hydrogen, substituted or unsubstituted lower alkyl, or the like; X is a bond or CR7aR7b (wherein R7a and R7b are each independently hydrogen or the like); when X is a bond, R3 is substituted or unsubstituted aryl or a substituted or unsubstituted aromatic heterocyclic group, while when X is CR7aR7b, R3 is substituted or unsubstituted lower alkoxy, substituted or unsubstituted aryl, or the like; R4 is hydrogen, hydroxy, substituted or unsubstituted lower alkoxy, or the like; and R5 is hydrogen, substituted or unsubstituted aryl, or the like.