896160-69-3Relevant articles and documents
Commercially Available CuO Catalyzed Hydrogenation of Nitroarenes Using Ammonia Borane as a Hydrogen Source
Du, Jialei,Chen, Jie,Xia, Hehuan,Zhao, Yiwei,Wang, Fang,Liu, Hong,Zhou, Weijia,Wang, Bin
, p. 2426 - 2430 (2020/03/30)
Tandem ammonia borane dehydrogenation and nitroarenes hydrogenation has been reported as a novel strategy for the preparation of aromatic amines. However, the practical application of this strategy is subjected to the high-cost and tedious preparation of supported noble metal nanocatalysts. The commercially available CuO powder is herein demonstrated to be a robust catalyst for hydrogenation of nitroarenes using ammonia borane as a hydrogen source under mild conditions. Numerous amines (even sterically hindered, halogenated, and diamines) could be obtained through this method. This monometallic catalyst is characteristic of support-free, excellent chemoselectivity, low-cost, and high recyclability, which will favor its future utilization in preparative reduction chemistry. Mechanistic studies are also carried out to clarify that diazene and azoxybenzene are key intermediates of this heterogeneous reduction.
Effect of the 3-halo substitution of the 2′-deoxy aminopyridinyl-pseudocytidine derivatives on the selectivity and stability of antiparallel triplex DNA with a CG inversion site
Wang, Lei,Taniguchi, Yosuke,Okamura, Hidenori,Sasaki, Shigeki
, p. 3853 - 3860 (2017/06/13)
Triplex formation against a target duplex DNA has the potential to become a tool for the genome research. However, there is an intrinsic restriction on the duplex DNA sequences capable of forming the triplex DNA. Recently, we demonstrated the selective fo