89808-74-2Relevant articles and documents
4-PHENYL-N-(PHENYL)THIAZOL-2-AMINE DERIVATIVES AND RELATED COMPOUNDS AS ARYL HYDROCARBON RECEPTOR (AHR) AGONISTS FOR THE TREATMENT OF E.G. ANGIOGENESIS IMPLICATED OR INFLAMMATORY DISORDERS
-
Paragraph 00221; 00239, (2021/06/26)
4-phenyl-N-(phenyl)thiazol-2-amine and 4-(pyridin-3-yl)-N-( phenyl) thiazol-2-amine derivatives and the corresponding thiadiazole, thiophene, oxazole, oxadiazole, imidazole and triazole derivatives and related compounds as aryl hydrocarbon receptor (AHR) agonists for the treatment of angiogenesis implicated disorders, such as e.g. retinopathy, psoriasis, rheumatoid arthritis, obesity and cancer, or inflammatory disorders.
Design, synthesis and biological evaluation of imidazole and oxazole fragments as HIV-1 integrase-LEDGF/p75 disruptors and inhibitors of microbial pathogens
Rashamuse, Thompho J.,Harrison, Angela T.,Mosebi, Salerwe,van Vuuren, Sandy,Coyanis, E. Mabel,Bode, Moira L.
, (2019/11/26)
We describe here the synthesis of libraries of novel 1-subtituted-5-aryl-1H-imidazole, 5-aryl-4-tosyl-4,5-dihydro-1,3-oxazole and 5-aryl-1,3-oxazole fragments via microwave (MW)-assisted cycloaddition of para-toluenesulfonylmethyl isocyanide (TosMIC) to imines and aldehydes. The compounds obtained were biologically evaluated in an AlphaScreen HIV-1 IN-LEDGF/p75 inhibition assay with six imidazole-based compounds (16c, 16f, 17c, 17f, 20a and 20d) displaying more than 50% inhibition at 10 μM, with IC50 values ranging from 7.0 to 30.4 μM. Additionally the hypothesis model developed predicts all active scaffolds except 20d to occupy similar areas as the N-heterocyclic (A) moiety and two aromatic rings (B and C) of previously identified inhibitor 5. These results indicate that the identified compounds represent a viable starting point for their use as templates in the design of next generation inhibitors targeting the HIV-1 IN and LEDGF/p75 protein-protein interaction. In addition, the in vitro antimicrobial properties of these fragments were tested by minimum inhibitory concentration (MIC) assays showing that compound 16f exhibited a MIC value of 15.6 μg/ml against S. aureus, while 17f displayed a similar MIC value against B. cereus, suggesting that these compounds could be further developed to specifically target those microbial pathogens.
Tandem cycloaddition-decarboxylation of α-keto acid and isocyanide under oxidant-free conditions towards monosubstituted oxazoles
Zhang, Ling-Juan,Xu, Mei-Chen,Liu, Jie,Zhang, Xian-Ming
, p. 73450 - 73453 (2016/08/18)
An efficient method, tandem [3 + 2] cycloaddition-decarboxylation of α-keto acid and isocyanide promoted by copper salt, has been developed. Under oxidant-free conditions, a series monosubstituted oxazoles have been constructed. Different from the traditional application of α-oxo acids as acyl surrogates, the elegant approach herein ingeniously avoids consuming excess oxidants.