95-65-8Relevant articles and documents
A Hydroperoxide Method for 3,4-Xylenol Synthesis
Kurganova,Frolov,Koshel’,Nesterova,Shakun,Mazurin
, p. 451 - 456 (2018)
The aerobic oxidation reaction of 1,2-dimethyl-4-isopropylbenzene to a hydroperoxide in the presence of N-hydroxyphthalimide and its derivatives has been studied. It has been found that up to a hydrocarbon (HC) conversion of 25–30%, the selectivity for the tertiary hydroperoxide of 1,2-dimethyl-4-isopropylbenzene is over 90–95%. A method for assessing the catalytic activity of phthalimide compounds in liquid-phase oxidation reactions of 1,2-dimethyl-4-isopropylbenzene with the use of quantum-chemically calculated values for the energies of singly occupied molecular orbitals (ΔЕSOMO) has been proposed.
Electrochemical-induced hydroxylation of aryl halides in the presence of Et3N in water
Ke, Fang,Lin, Chen,Lin, Mei,Long, Hua,Wu, Mei,Yang, Li,Zhuang, Qinglong
supporting information, p. 6417 - 6421 (2021/08/03)
A thorough study of mild and environmentally friendly electrochemical-induced hydroxylation of aryl halides without a catalyst is presented. The best protocol consists of hydroxylation of different aryl iodides and aryl bromides by water solution in the presence of Et3N under air, affording the target phenols in good isolated yields. Moreover, aryl chlorides were successfully employed as substrates. This methodology also provides a direct pathway for the formation of deoxyphomalone, which displayed a significant anti-proliferation effect.
REARRANGEMENT OF DIMETHYLPHENYLACYLATES USING ZEOLITES
-
Page/Page column 9-11, (2021/08/14)
The present invention relates to a Fries rearrangement of specific dimethylphenylacylates to form the desired respective hydroxyaryl ketones having two methyl groups bound to the aromatic ring. It has been found that the process is surprisingly very specific in view of the number and position of the methyl group(s) bound to the aromatic ring.
Reaction of hydroxyl radical with arenes in solution—On the importance of benzylic hydrogen abstraction
Waggoner, Abygail R.,Abdulrahman, Yahya,Iverson, Alexis J.,Gibson, Ethan P.,Buckles, Mark A.,Poole, James S.
, (2021/08/27)
The regioselectivity of hydroxyl radical reactions with alkylarenes was investigated using a nuclear magnetic resonance (NMR)-based methodology capable of trapping and quantifying addition and hydrogen abstraction products of the initial elementary step of the oxidation process. Abstraction products are relatively minor components of the product mixtures (15–30 mol%), depending on the magnitude of the overall rate coefficient and the number of available hydrogens. The relative reactivity of addition at a given position on the ring depends on its relation to the methyl substituents on the hydrocarbons under study. The reactivity enhancements for disubstituted and trisubstituted rings are approximately additive under the conditions of this study.
Method for synthesizing phenol or derivative thereof in aqueous phase by photocatalytic one-pot method
-
Paragraph 0032-0033; 0076-0078; 0085-0106, (2020/12/08)
The invention discloses a method for synthesizing phenol or a derivative thereof in an aqueous phase by a photocatalytic one-pot method. The method comprises the following steps: by taking a compoundaryl halide shown in formula (I) as a raw material and water as a solvent, adding a catalyst and an auxiliary agent, and carrying out reacting under the conditions of alkali and visible light to obtain the phenol or the derivative (II) thereof. Compared with the prior art, the method is applicable to a large number of functional groups, high in yield, few in byproducts, simple and safe to operate,low in cost and environmentally friendly, wherein R is selected from substituted or non-substituted phenyl, pyridyl, quinolyl or pyrimidinyl; X is selected from halogen; the substituted phenyl is substituted by C1-C4 alkyl, C1-C4 alkoxy, hydroxyl, halogen, cyano, aldehyde group, nitro, amino, acetyl or carboxyl; and the substituted pyridyl, quinolyl or pyrimidinyl is pyridyl, quinolyl or pyrimidinyl substituted by C1-C4 alkyl.
Substrate substitution effects in the Fries rearrangement of aryl esters over zeolite catalysts
Bonrath, Werner,Létinois, Ulla,Lin, Ronghe,Medlock, Jonathan,Mitchell, Sharon,Netscher, Thomas,Pérez-Ramírez, Javier,Stemmler, René T.
, p. 4282 - 4292 (2020/07/30)
The catalytic transformation of aryl esters to hydroxyacetophenones via Fries rearrangement over solid acids is of interest to avoid the use of corrosive and toxic Lewis and Br?nsted acids traditionally applied. Microporous zeolites are known to catalyze the reaction of simple substrates such as phenyl acetate, but their application to substituted derivatives has received limited attention. To refine structure-activity relationships, here we examine the impact of various parameters including the solvent polarity, water content, acidic properties, and framework type on the reaction scheme in the Fries rearrangement of p-tolyl acetate over common solid acids. The results confirm the importance of providing a high concentration of accessible Br?nsted acid sites, with beta zeolites exhibiting the best performance. Extension of the substrate scope by substituting methyl groups in multiple positions identifies a framework-dependent effect on the rearrangement chemistry and highlights the potential for the transformation of dimethylphenyl acetates. Kinetic studies show that the major competitive path of cleavage of the ester C-O bond usually occurs in parallel to the Fries rearrangement. The possibility of sequentially acylating the resulting phenol depends on the substrate and reaction conditions.
Polymer-supported eosin Y as a reusable photocatalyst for visible light mediated organic transformations
Sridhar, Arunasalam,Rangasamy, Rajmohan,Selvaraj, Mari
, p. 17974 - 17979 (2019/12/02)
A novel polymer-supported recyclable photocatalyst has been developed for visible light mediated oxidation reactions. The organic dye eosin Y was loaded on macroporous commercially available Amberlite IRA 900 chloride resin and exploited as a photocatalyst for visible light mediated oxidation of thioethers to sulfoxides and phenylboronic acids to phenols under open atmospheric air. Varieties of functional groups were well tolerated during oxidation. The catalyst is recyclable for six cycles without significant loss in its efficiency. Furthermore, gram-scale oxidation of sulfides to sulfoxides has been demonstrated to prove the commercial viability of the method.
Regioselectivity of Hydroxyl Radical Reactions with Arenes in Nonaqueous Solutions
Moores, Lee C.,Kaur, Devinder,Smith, Mathew D.,Poole, James S.
, p. 3260 - 3269 (2019/03/11)
The regioselectivity of hydroxyl radical addition to arenes was studied using a novel analytical method capable of trapping radicals formed after the first elementary step of reaction, without alteration of the product distributions by secondary oxidation processes. Product analyses of these reactions indicate a preference for o- over p-substitution for electron donating groups, with both favored over m-addition. The observed distributions are qualitatively similar to those observed for the addition of other carbon-centered radicals, although the magnitude of the regioselectivity observed is greater for hydroxyl. The data, reproduced by high accuracy CBS-QB3 computational methods, indicate that both polar and radical stabilization effects play a role in the observed regioselectivities. The application and potential limitations of the analytical method used are discussed.
Thermal Behavior Analysis of Two Synthesized Flavor Precursors of N-alkylpyrrole Derivatives
Ai, Lvye,Liu, Mengzhen,Ji, Xiaoming,Lai, Miao,Zhao, Mingqin,Ren, Tianbao
, p. 2389 - 2397 (2019/08/01)
To expand the library of pyrrole-containing flavor precursors, two new flavor precursors—methyl N-benzyl-2-methyl-5-formylpyrrole-3-carboxylate (NBMF) and methyl N-butyl-2-methyl-5-formylpyrrole-3-carboxylate (NUMF)—were synthesized by cyclization, oxidation, and alkylation reactions. Thermogravimetry (TG), differential scanning calorimeter, and pyrolysis–gas chromatography/mass spectrometry were utilized to analyze the thermal degradation behavior and thermal degradation products of NBMF and NUMF. The TG-DTG curve indicated that the maximum mass loss rates of NBMF and NUMF appear at 310 and 268°C, respectively. The largest peaks of NBMF and NUMF showed by the differential scanning calorimeter curve were 315 and 274°C, respectively. Pyrolysis–gas chromatography/mass spectrometry detected small molecule fragrance compounds appeared during thermal degradation, such as 2-methylpyrrole, 1-methylpyrrole-2-carboxylic acid methyl ester, limonene, and methyl formate. Finally, the thermal degradation mechanism of NBMF and NUMF was discussed, which provided a theoretical basis for their application in tobacco flavoring additives.
Method for synthesizing high added value xylenol through isomerization of 2,6-dimethylphenol
-
Paragraph 0038-0140, (2019/02/08)
The invention discloses a method for synthesizing high added value xylenol through isomerization of 2,6-dimethylphenol. The method comprises: 1, pouring a catalyst and 2,6-dimethylphenol into a reaction bottle, uniformly stirring, and carrying out a thermal insulation reaction to obtain a reaction product; 2, carrying out a hydrolysis reaction on the reaction product, carrying out standing layering, and separating to obtain a water phase and an organic phase; and 3, combining the extractant obtained by extracting the water phase and the organic phase, and sequentially carrying out washing, drying, decolorization and pressure reducing distillation treatment to obtain xylenol. According to the present invention, 2,6-dimethylphenol is subjected to methyl rearrangement isomerization under theaction of the catalyst to obtain the wide-use and high-added value xylenol including 2,5-dimethylphenol, 3,5-dimethylphenol, 2,3-dimethylphenol and 3,4-dimethylphenol, such that the low value productis converted into the high value product, the raw material and process costs are reduced, the environmental pollution is low, and the method is suitable for industrial production.