959979-30-7Relevant articles and documents
Metal-Free Deoxygenation of Chiral Nitroalkanes: An Easy Entry to α-Substituted Enantiomerically Enriched Nitriles
Pirola, Margherita,Faverio, Chiara,Orlandi, Manuel,Benaglia, Maurizio
supporting information, p. 10247 - 10250 (2021/06/18)
A metal-free, mild and chemodivergent transformation involving nitroalkanes has been developed. Under optimized reaction conditions, in the presence of trichlorosilane and a tertiary amine, aliphatic nitroalkanes were selectively converted into amines or nitriles. Furthermore, when chiral β-substituted nitro compounds were reacted, the stereochemical integrity of the stereocenter was maintained and α-functionalized nitriles were obtained with no loss of enantiomeric excess. The methodology was successfully applied to the synthesis of chiral β-cyano esters, α-aryl alkylnitriles, and TBS-protected cyanohydrins, including direct precursors of four active pharmaceutical ingredients (ibuprofen, tembamide, aegeline and denopamine).
A Continuous-Flow, Two-Step, Metal-Free Process for the Synthesis of Differently Substituted Chiral 1,2-Diamino Derivatives
Pirola, Margherita,Compostella, Maria Elena,Raimondi, Laura,Puglisi, Alessandra,Benaglia, Maurizio
supporting information, p. 1430 - 1438 (2018/02/09)
The enantioselective organocatalytic reduction of aryl-substituted nitroenamines was successfully performed under continuous-flow conditions. After a preliminary screening with a 10-μL microreactor, to establish the best reaction conditions, the reduction was scaled up in a 0.5-mL mesoreactor, without appreciable loss of enantioselectivity, that remained constantly higher than 90%. The in-flow nitro reduction was also accomplished, either by Raney nickel catalyzed hydrogenation or by a metal-free methodology based on the use of the very inexpensive and readily available reducing agent trichlorosilane. The final aim is to develop a two-step, continuous-flow process for the stereoselective, metal-free, catalytic synthesis of differently functionalized chiral 1,2-diamines.
Enantioselective thiourea-catalyzed additions to oxocarbenium ions
Reisman, Sarah E.,Doyle, Abigail G.,Jacobsen, Eric N.
, p. 7198 - 7199 (2008/12/21)
Asymmetric, catalytic reactions of oxocarbenium ions are reported. Simple, chiral urea and thiourea derivatives are shown to catalyze the enantioselective substitution of silyl ketene acetals onto 1-chloroisochromans. A mechanism involving anion binding by the chiral catalyst to generate a reactive oxocarbenium ion is invoked. Catalysts bearing tertiary benzylic amide groups afforded highest enantioselectivities, with the optimal structure being derived from enantioenriched 2-arylpyrrolidine derivatives. Copyright