97985-66-5Relevant articles and documents
Iron-Catalyzed ?±,?-Dehydrogenation of Carbonyl Compounds
Zhang, Xiao-Wei,Jiang, Guo-Qing,Lei, Shu-Hui,Shan, Xiang-Huan,Qu, Jian-Ping,Kang, Yan-Biao
supporting information, p. 1611 - 1615 (2021/03/03)
An iron-catalyzed α,β-dehydrogenation of carbonyl compounds was developed. A broad spectrum of carbonyls or analogues, such as aldehyde, ketone, lactone, lactam, amine, and alcohol, could be converted to their α,β-unsaturated counterparts in a simple one-step reaction with high yields.
Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics
Buijs, Ned,Campagna, Roberto,Emanuelli, Monica,Gao, Yongzhi,Innocenti, Paolo,Jespers, Willem,Martin, Nathaniel I.,Parsons, Richard B.,Sartini, Davide,Van Haren, Matthijs J.,Van Westen, Gerard J. P.,Zhang, Yurui,Gutiérrez-De-Terán, Hugo
, p. 12938 - 12963 (2021/09/11)
Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide (vitamin B3) to generate 1-methylnicotinamide (MNA). NNMT overexpression has been linked to a variety of diseases, most prominently human cancers, indicating its potential as a therapeutic target. The development of small-molecule NNMT inhibitors has gained interest in recent years, with the most potent inhibitors sharing structural features based on elements of the nicotinamide substrate and the S-adenosyl-l-methionine (SAM) cofactor. We here report the development of new bisubstrate inhibitors that include electron-deficient aromatic groups to mimic the nicotinamide moiety. In addition, a trans-alkene linker was found to be optimal for connecting the substrate and cofactor mimics in these inhibitors. The most potent NNMT inhibitor identified exhibits an IC50 value of 3.7 nM, placing it among the most active NNMT inhibitors reported to date. Complementary analytical techniques, modeling studies, and cell-based assays provide insights into the binding mode, affinity, and selectivity of these inhibitors.
Method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and diphosphine ligand used in method
-
Paragraph 0146-0148, (2021/05/29)
The invention discloses a method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and a diphosphine ligand used in the method. According to the invention, indole-substituted phosphoramidite diphosphine ligand which is stable in air and insensitive to light is synthesized by utilizing a continuous one-pot method, and the indole-substituted phosphoramidite diphosphine ligand and a rhodium catalyst are used for jointly catalyzing to successfully achieve a hydroformylation reaction of aromatic terminal alkyne and terminal conjugated eneyne under the condition of synthesis gas for the first time, so that an olefine aldehyde structure compound can be rapidly and massively prepared, and particularly, a polyolefine aldehyde structure compound which is more difficult to synthesize in the prior art can be easily prepared and synthesized, and a novel method is provided for synthesis and modification of drug molecules, intermediates and chemical products.
Palladium-Catalyzed [5 + 2] Annulation of Vinylethylene Carbonates with Barbiturate-Derived Alkenes
Chen, Yuehua,Deng, Hao,Gao, Xing,Guo, Hongchao,Jiang, Feng,Wang, Wei,Wu, Yongjun,Zhu, Dongyu
supporting information, p. 7158 - 7163 (2020/10/02)
A palladium/XantPhos-catalyzed [5 + 2] annulation of VECs with electron-deficient alkenes having an isolated carbon-carbon double bond has been developed to afford spirobarbiturate-tetrahydrooxepines. This study provides an expedient assembly of biologically interesting spirobarbiturate-tetrahydrooxepines. The easy scalability and versatile transformability of the reaction products were also exhibited.
Discovery and SAR of Natural-Product-Inspired RXR Agonists with Heterodimer Selectivity to PPARδ-RXR
Nakashima, Ken-Ichi,Yamaguchi, Eiji,Noritake, Chihaya,Mitsugi, Yukari,Goto, Mayuki,Hirai, Takao,Abe, Naohito,Sakai, Eiji,Oyama, Masayoshi,Itoh, Akichika,Inoue, Makoto
, p. 1526 - 1534 (2020/05/19)
A known natural product, magnaldehyde B, was identified as an agonist of retinoid X receptor (RXR) α. Magnaldehyde B was isolated from Magnolia obovata (Magnoliaceae) and synthesized along with more potent analogs for screening of their RXRα agonistic activities. Structural optimization of magnaldehyde B resulted in the development of a candidate molecule that displayed a 440-fold increase in potency. Receptor-ligand docking simulations indicated that this molecule has the highest affinity with the ligand binding domain of RXRα among the analogs synthesized in this study. Furthermore, the selective activation of the peroxisome proliferator-activated receptor (PPAR) δ-RXR heterodimer with a stronger efficacy compared to those of PPARα-RXR and PPARγ-RXR was achieved in luciferase reporter assays using the PPAR response element driven reporter (PPRE-Luc). The PPARδactivity of the molecule was significantly inhibited by the antagonists of both RXR and PPARδ, whereas the activity of GW501516 was not affected by the RXR antagonist. Furthermore, the molecule exhibited a particularly weak PPARδagonistic activity in reporter gene assays using the Gal4 hybrid system. The obtained data therefore suggest that the weak PPARδagonistic activity of the optimized molecule is synergistically enhanced by its own RXR agonistic activity, indicating the potent agonistic activity of the PPARδ-RXR heterodimer.
Iron(III)/O2-Mediated Regioselective Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes
Bhowmik, Amit,Fernandes, Rodney A.
supporting information, p. 9203 - 9207 (2019/11/14)
A simple, efficient, and environmentally benevolent regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by iron(III) sulfate/O2 has been developed. The reaction offered good yields and excellent regioselectivity and showed good functional group tolerance (31 examples). The method is important, as few reports with limited substrate scope are available for such excellent oxidative cleavage of conjugated dienes.
Highly Enantioselective Synthesis of Functionalized Glutarimide Using Oxidative N-Heterocyclic Carbene Catalysis: A Formal Synthesis of (?)-Paroxetine
Porey, Arka,Santra, Surojit,Guin, Joyram
, p. 5313 - 5327 (2019/04/16)
A simple yet highly effective approach toward enantioselective synthesis of trans-3,4-disubstituted glutarimides from readily available starting materials is developed using oxidative N-heterocyclic carbene catalysis. The catalytic reaction involves a formal [3 + 3] annulation between enals and substituted malonamides enabling the production of glutarimide derivatives in a single chemical operation via concomitant formation of C-C and C-N bonds. The reaction offers easy access to a broad range of functionalized glutarimides with excellent enantioselectivity and good yield. Synthetic application of the method is demonstrated via formal synthesis of (?)-paroxetine and other bioactive molecules.
Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi
Coelho, Gleicekelly Silva,Andrade, Josimara Souza,Xavier, Viviane Flores,Sales Junior, Policarpo Ademar,Rodrigues de Araujo, Barbara Caroline,Fonseca, Kátia da Silva,Caetano, Melissa Soares,Murta, Silvane Maria Fonseca,Vieira, Paula Melo,Carneiro, Claudia Martins,Taylor, Jason Guy
, p. 337 - 350 (2018/12/05)
Chagas disease is caused by infection with the parasite protozoan Trypanosoma cruzi and affects about 8 million people in 21 countries in Latin America. The main form of treatment of this disease is still based on the use of two drugs, benznidazole and nifurtimox, which both present low cure rates in the chronic phase and often have serious side-effects. Herein, we describe the synthesis of tricyclic coumarins that were obtained via NHC organocatalysis and evaluation of their trypanocidal activity. Molecular docking studies against trypanosomal enzyme triosephosphate isomerase (TIM) were carried out, as well as a theoretical study of the physicochemical parameters. The tricyclic coumarins were tested in vitro against the intracellular forms of Trypanosoma cruzi. Among the 18 compounds tested, 10 were more active than the reference drug benznidazole. The trypanocidal activity of the lead compound was rationalized by molecular docking study which suggested the strong interaction with the enzyme TIM by T.?cruzi and therefore indicating a possible mode of action. Furthermore, the selectivity index of eight tricyclic coumarins with high anti-T.?cruzi activity was above 50 and thus showing that these lead compounds are viable candidates for further in vivo assays.
Secondary amine-catalyzed [3 + 3] benzannulation to access polysubstituted benzenes through iminium activation
Jiang, Lin,Li, Hang,Zhou, Jiang-Feng,Yuan, Ming-Wei,Li, Hong-Li,Chuan, Yong-Ming,Yuan, Ming-Long
supporting information, p. 336 - 343 (2018/02/09)
An organocatalytic [3 + 3] benzannulation to access polysubstituted benzenes from readily available α,β-unsaturated aldehydes and 1,3-bis(phenylsulfonyl)propene or 4-sulfonylcrotonates is described. The key reaction step is considered to be the iminium ac
Dehydrogenative Synthesis of Linear α,β-Unsaturated Aldehydes with Oxygen at Room Temperature Enabled by tBuONO
Wang, Mei-Mei,Ning, Xiao-Shan,Qu, Jian-Ping,Kang, Yan-Biao
, p. 4000 - 4003 (2017/06/19)
Synthesis of linear α,β-unsaturated aldehydes via a room-temperature oxidative dehydrogenation has been realized by the cocatalysis of an organic nitrite and palladium with molecular oxygen as the sole clean oxidant. Linear α,β-unsaturated aldehydes could be efficiently prepared under aerobic catalytic conditions directly from the corresponding saturated linear aldehydes. Besides linear products, the aromatic analogy could also be smoothly achieved by the same standard method. The organic nitrite redox cocatalyst and alcohol solvent play a key role for realizing this method.