Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1002355-96-5

Post Buying Request

1002355-96-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1002355-96-5 Usage

Uses

Building block used as a precursor to the synthesis of thia and oxa-azaspiro[3.4]octanes. As reported in the Carreira lab, the product can readily undergo [3+2] cycloadditions with dipolariphiles to generate a series of small-ring spirocycles.

Check Digit Verification of cas no

The CAS Registry Mumber 1002355-96-5 includes 10 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 7 digits, 1,0,0,2,3,5 and 5 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1002355-96:
(9*1)+(8*0)+(7*0)+(6*2)+(5*3)+(4*5)+(3*5)+(2*9)+(1*6)=95
95 % 10 = 5
So 1002355-96-5 is a valid CAS Registry Number.

1002355-96-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name tert-Butyl 3-(2-ethoxy-2-oxoethylidene)azetidine-1-carboxylate

1.2 Other means of identification

Product number -
Other names tertbutylethoxyoxoethylideneazetidinecarboxylate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1002355-96-5 SDS

1002355-96-5Relevant articles and documents

Cycloaddition Strategies for the Synthesis of Diverse Heterocyclic Spirocycles for Fragment-Based Drug Discovery

King, Thomas A.,Stewart, Hannah L.,Mortensen, Kim T.,North, Andrew J. P.,Sore, Hannah F.,Spring, David R.

, p. 5219 - 5229 (2019)

In recent years the pharmaceutical industry has benefited from the advances made in fragment-based drug discovery (FBDD) with more than 30 fragment-derived drugs currently marketed or progressing through clinical trials. The success of fragment-based drug

Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite Plasmodium falciparum and Optimization Efforts

Le Manach, Claire,Dam, Jean,Woodland, John G.,Kaur, Gurminder,Khonde, Lutete P.,Brunschwig, Christel,Njoroge, Mathew,Wicht, Kathryn J.,Horatscheck, André,Paquet, Tanya,Boyle, Grant A.,Gibhard, Liezl,Taylor, Dale,Lawrence, Nina,Yeo, Tomas,Mok, Sachel,Eastman, Richard T.,Dorjsuren, Dorjbal,Talley, Daniel C.,Guo, Hui,Simeonov, Anton,Reader, Janette,Van Der Watt, Mari?tte,Erlank, Erica,Venter, Nelius,Zawada, Jacek W.,Aswat, Ayesha,Nardini, Luisa,Coetzer, Theresa L.,Lauterbach, Sonja B.,Bezuidenhout, Belinda C.,Theron, Anjo,Mancama, Dalu,Koekemoer, Lizette L.,Birkholtz, Lyn-Marie,Wittlin, Sergio,Delves, Michael,Ottilie, Sabine,Winzeler, Elizabeth A.,Smith, Dennis,Fidock, David A.,Street, Leslie J.,Basarab, Gregory S.,Duffy, James,Chibale, Kelly

, p. 2291 - 2309 (2021/03/01)

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.

Cobalt-Catalyzed Diastereo- And Enantioselective Reductive Allyl Additions to Aldehydes with Allylic Alcohol Derivatives via Allyl Radical Intermediates

Wang, Lei,Wang, Lifan,Li, Mingxia,Chong, Qinglei,Meng, Fanke

supporting information, p. 12755 - 12765 (2021/08/30)

Catalytic generation of ambiphilic π-allyl-metal complexes and their utility in enantioselective transformations constitutes a powerful approach for introduction of allyl groups to a molecule. Herein an unprecedented cobalt-catalyzed highly site-, diastereo-, and enantioselective protocol for stereoselective formation of nucleophilic allyl-Co(II) complexes followed by addition to aldehydes is presented. The reaction features diastereo- and enantioconvergent conversion of easily accessible allylic alcohol derivatives to diversified enantioenriched homoallylic alcohols with a remarkably broad scope of allyl groups that can be introduced. Mechanistic studies indicated that allyl radical intermediates were involved in this process. These new discoveries establish a new strategy for development of enantioselective transformations through capture of radicals by chiral Co complexes, pushing forward the frontier of Co complexes for enantioselective catalysis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1002355-96-5