Welcome to LookChem.com Sign In|Join Free

CAS

  • or

107-15-3

Post Buying Request

107-15-3 Suppliers

Recommended suppliersmore

This product is a nationally controlled contraband, and the Lookchem platform doesn't provide relevant sales information.

107-15-3 Usage

Chemical Description

Different sources of media describe the Chemical Description of 107-15-3 differently. You can refer to the following data:
1. Ethylenediamine is a colorless, viscous liquid with a faint odor that is commonly used as a building block in the production of various chemicals, including pharmaceuticals, agrochemicals, and polymers.
2. Ethylenediamine and N-methylethylenediamine are used in the condensation method for the synthesis of adducts.
3. Ethylenediamine is a diamine with the formula H2NCH2CH2NH2.

Description

Different sources of media describe the Description of 107-15-3 differently. You can refer to the following data:
1. Ethylenediamine (EDA) is a clear and colorless product at normal temperature and pressure which has a characteristic smell of an amine. It is strongly alkaline and is miscible with water and alcohol. It is air sensitive and hygroscopic and absorbs carbon dioxide from the air. It is incompatible with aldehydes, phosphorus halides, organic halides, oxidising agents, strong acids, copper, its alloys, and its salts.
2. Ethylenediamine is used in numerous industrial proces ses as a solvent for casein or albumin, as a stabilizer in rubber latex and as a textile lubricant. It can be found in epoxy-resin hardeners, cooling oils, fungicides, and waxes. Contact dermatitis from ethylenediamine is almost exclusively due to topical medicaments. Occupational contact dermatitis in epoxy-resin systems is rather infrequent. Ethylenediamine can cross react with triethylenetetramine and diethylenetriamine. Ethylenediamine was responsible for sensitization in pharmacists handling aminophylline suppositories, in nurses preparing and administering injectable theophylline, and in a laboratory technician in the manufacture of aminophylline tab lets.

synthesis

Ethylenediamine can be synthesized from ethanolamine (EA) with ammonia over acidic types of zeolite catalyst.2 It is produced industrially by the reaction of 1,2-dichloroethane with ammonia in a liquid base under high temperature and high presseure.3 The synthesis of ethylenediamine from 1,2-dichloroethane is ClCH2CH2Cl + 2NH3 → NH2CH2CH2NH2*2HCl ClCH2CH2Cl + NH2CH2CH2NH2*2HCl + 2NH3 → NH2CH2C H2NHCH2CH2NH3*3HCl + NH4HCl Nevertheless, there are too many byproducts during the reaction. The key of this synthesis is to improve the selectivity of reaction product and the application of advanced separation methods to obtain high product purity.

Application

Ligands in coordination chemistry With the two nitrogen atoms, which can donate their lone pairs of electrons, ethylenediamine is widely used as a chelating ligand for coordination chemistry to form bonds to a transition-metal ion such as nickel (II).3 The bonds form between the metal ion and the nitrogen atoms of ethylenediamine. Ethylenediaminetetraacetic acid (EDTA) is a derivate of ethylenediamine and it is a versatile chelating agent, which could form chelates with both transition-metal ions and main-group ions. Ethylenediamine is mainly used to synthesize ethylenediaminetetraacetic acid. EDTA is frequently used in soaps and detergents to form complexes with calcium and magnesium ions in hard water to improve the cleaning efficiency. Furthermore, EDTA is used extensively as a stabilizing agent in the food industry to promote color retention, to improve flavor retention, and to inhibit rancidity. Pharmaceutical ingredient Ethylenediamine is used to facilitate the dissolution of theophylline. This combination is known as aminophylline and used to treat and prevent wheezing and trouble breathing caused by ongoing lung disease (e.g. asthma, emphysema, chronic bronchitis).4 It is evidenced that there is no molecular association between theophylline and ethylenediamine in biological media. The bioavailability of ethylenediamine is approximately 34% and of theophylline is about 88%.5 Tetraacetylethylenediamine Ethylenediamine is used as an intermediate in the manufacture of tetraacetyl ethylenediamine (TAED), a bleaching activator, which is used in detergents and additives for laundry washing and dishwashing.6 The amount of TAED used in household cleaning products in Europe was estimated to be 61,000 t in 2001. Other applications Ethylenediamine is in the manufacture of organic flocculants, urea resins, and fatty bisamides. It is used in the production of formulations for use in the printed circuit board and metal finishing industries. It is used as intermediate in the production of crop protection agents, hardeners for epoxy resins, leather industry, paint industry, fungicides in crop protection area, and textile industry.7 Ethylenediamine is also used as solvent and for the analytical chemistry. It is used to produce photographic fixer additive

References

[1] Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values, Pure & Applied Chemistry, vol. 56, 1984, pp.491-522 https://pdfs.semanticscholar.org/0a2c/9b67e3f39b4b4fc81a143b8aba7d9b82e35d.pdf [2] K. Segawa, S. Mizuno, M. Sugiura, S. Nakata, Selective synthesis of ethylenediamine from ethanolamine over modified H-mordenite catalyst, Studies in Surface Science and Catalysis, vol. 101, 1996, pp. 267-276 https://www.sciencedirect.com/science/article/pii/S0167299196802370 [3] https://en.wikipedia.org/wiki/Ethylenediamine [4] Norbert Rietbrock, B. G. Woodcock, A. H. Staib, Theophylline and other Methylxanthines, 1981, ISBN 978-3-663-05269-2 [5] Ian A. Cotgreave, John Caldwell, Comparative plasma pharmacokinetics of theophylline and ethylenediamine after the administration of aminophylline to man, Journal of Pharmacy and Pharmacology, vol. 35, 1983, pp. 378-382 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-7158.1983.tb02960.x [6] http://www.heraproject.com/files/2-f-04-hera%20taed%20full%20web%20wd.pdf [7] http://product-finder.basf.com/group/corporate/product-finder/en/brand/ETHYLENEDIAMINE

Chemical Properties

Ethylenediamine, a polyamine, is a strongly alkaline, colorless, clear, thick liquid. Ammonia odor. A solid below 8.5℃. The Odor Threshold is 1.0 ppm

Physical properties

Clear, colorless, volatile, slight viscous, hygroscopic liquid with a sweet, ammonia-like odor. The average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were 12 and 52 mg/L, respectively (Alexander et al., 1982).

Uses

Different sources of media describe the Uses of 107-15-3 differently. You can refer to the following data:
1. Ethylenediamine is used as a stabilizerfor rubber latex, as an emulsifier, as aninhibitor in antifreeze solutions, and intextile lubricants. It is also used as a solvent for albumin, shellac, sulfur, and othersubstances.
2. Intermediate in the manufacture of EDTA; catalytic agent in epoxy resins; dyes, solvent stabilizer; neutralizer in rubber products
3. [Note—Edamine is the recommended contraction for the ethylenediamine radical.].

Definition

Different sources of media describe the Definition of 107-15-3 differently. You can refer to the following data:
1. ChEBI: An alkane-alpha,omega-diamine in which the alkane is ethane.
2. An organic compound, H2NCH2CH2NH2. It is important in inorganic chemistry because it may function as a bidentantate ligand, coordinating to a metal ion by the lone pairs on the two nitrogen atoms. In the names of complexes it is given the abbreviation en.

Production Methods

The production of ethylene-1,2-diamine (EDA) is by the catalytic amination of monoethanolamine or the reaction of aqueous ammonia with 1,2-dichloroethane (Spitz 1979). U.S. Production is estimated at greater than 33,000 tons in 1975.

General Description

Ethylenediamine is a linear aliphatic diamine, widely used as a building block in organic synthesis. It readily forms heterocyclic imidazolidine derivatives, because of its bifunctional nature, having two amines. Ethylenediamine is also utilized as a raw material for the synthesis of chelating agents, polymers, agrochemicals and pharmaceutical intermediates.

Air & Water Reactions

Highly flammable. Hygroscopic. Fumes in the air. Water soluble. Biodegrades readily.

Reactivity Profile

A base. Highly reactive with many compounds. Can react violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, allyl chloride, carbon disulfide, chlorosulfonic acid, epichlorohydrin, ethylene chlorohydrin, hydrogen chloride, mesityl oxide, nitric acid, oleum, AgClO4, sulfuric acid, beta-propiolactone and vinyl acetate. Incompatible with strong acids, strong oxidizers (perchlorate salts), and chlorinated organic compounds. Ethylenediamine is also incompatible with halogenated organic compounds and metal halides. May react with nitromethane and diisopropyl peroxydicarbonate. May ignite on contact with cellulose nitrate. Readily absorbs carbon dioxide from the air to give crusty solid deposits. . Ethylenediamine reacts violently with ethylene chlorohydrin. (Lewis, R.J., Sr. 1992. Sax's Dangerous Properties of Industrial Materials, 8th Edition. New York: Van Nostrand Reinhold. pp. 1554.).

Hazard

Toxic by inhalation and skin absorption, strong irritant to skin and eyes. Flammable, moderate fire risk. Questionable carcinogen.

Health Hazard

Different sources of media describe the Health Hazard of 107-15-3 differently. You can refer to the following data:
1. Ethylenediamine is a severe skin irritant, producing sensitization, an allergic reaction andblistering on the skin. Pure liquid on contact with the eyes can damage vision. A25% aqueous solution can be injurious to theeyes. Inhalation of its vapors can producea strong irritation to the nose and respiratory tract leading to chemical pneumonitis and pulmonary edema. Such irritation inhumans with symptoms of cough and dis tressed breathing may be noted at concentrations of >400 ppm. Repeated exposure tohigh concentrations of this substance in airmay cause lung, liver, and kidney damage.The toxicity of this compound, however, is much less than that of ethylenimine.The acute oral toxicity value in animalswas low to moderate. An oral LD50 value inrats is 500 mg/kg (NIOSH 1986).
2. Human subjects found 100 p.p.m. EDA for a few seconds to be inoffensive but higher concentrations of 200 and 400 p.p.m. produced noticeable irritation of the nasal mucosa (HSDB 1988). Acute EDA ingestion will cause burns of the mouth, esophagus and possibly stomach. Eye contact would be expected to produce a serious burn due to the corrosiveness of the compound. Acute exposure to the skin is likely to produce a skin burn, while chronic exposure will cause a serious burn. EDA, in addition, is a potent allergen causing hypersensitization in exposed individuals (HSDB 1988). Because of such reactions, it has been difficult to establish threshold limits that will prevent the hypersensitization response. Allergic reactions to EDA in hair and nail care products have been observed among beauty operators, patrons and their husbands (Arena 1979). In the lacquer and shellac industries, exposure to EDA used as a solvent or paint thinner has produced wheezing, heaviness in the chest, severe asthma, allergic coryza and skin rashes (Arena 1979). Workmen exposed to EDA occasionally see halos around objects and have some blurring of vision, presumably due to the effects on the corneal epithelium (Grant 1974). In a study population of 1158 paid volunteers given a patch test, 0.43% showed a positive reaction to EDA (Prystowsky et al 1979).

Fire Hazard

Burning rate: 2.2 mm/minute. When exposed to heat or flame, the material has a moderate fire potential. The material can react readily with oxidizing materials. Containers may explode in heat of fire. Material emits nitrogen oxides when burned. Avoid carbon disulfide, silver perchlorate, imines, oxidizing materials. Stable. Hazardous polymerization may not occur.

Chemical Reactivity

Reactivity with Water Gives off heat, but reaction is not hazardous; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Industrial uses

EDA functions as a reactive intermediate in the synthesis of carbamate fungicides and in the preparation of dyes, synthetic waxes, resins, insecticides and asphalt wetting agents (Parmeggiani 1983). EDA is a solvent for casein, albumin, shellac, and sulfur; an emulsifier; a stabilizer for rubber latex; an inhibitor in antifreeze solutions; and a pharmaceutic aid (aminophylline injection stabilizer) (Windholz 1983). It is also an important ingredient in hair-settings, cold wave lotions, and nail polish (Arena 1979).

Contact allergens

Ethylenediamine is used in numerous industrial processes as a solvent for casein or albumin, as a stabilizer in rubber latex, and as a textile lubricant. It can be found in epoxy resin hardeners, cooling oils, fungicides, and waxes. Contact dermatitis from ethylenediamine is almost exclusively due to topical medicaments. Occupational contact dermatitis in epoxy resin systems is rather infrequent. Ethylenediamine can crossreact with triethylenetetramine and diethylenetriamine. Ethylenediamine was found to be responsible for sensitization in pharmacists handling aminophylline suppositories, in nurses preparing and administering injectable theophylline, and in a laboratory technician in the manufacture of aminophylline tablets

Safety Profile

A human poison by inhalation. Experimental poison by inhalation, intraperitoneal, subcutaneous, and intravenous routes. Moderately toxic by ingestion and skin contact, Experimental reproductive effects. Corrosive. A severe skin and eye irritant. An allergen and sensitizer. Mutation data reported. Flammable liquid when exposed to heat, flame, or oxidizers. Can react violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, allyl chloride, CS2, chlorosulfonic acid, epichlorohydrin, ethylene chlorohydrin, HCl, mesityl oxide, HNO3, oleum, AgClO4, H2SO4, Ppropiolactone, or vinyl acetate. To fight fwe, use CO2, dry chemical, alcohol foam. When heated to decomposition it emits toxic fumes of NOx and NH3. See also MINES.

Potential Exposure

Ethylenediamine is used as an intermediate; as a urine acidifier; as a solvent; an emulsifier for casein and shellac solutions; a stabilizer in rubber late. A chemical intermediate in the manufacture of dyes; corrosion inhibitors; synthetic waxes; fungicides, resins, insecticides, asphalt wetting agents; and pharmaceuticals. Ethylenediamine is a degradation product of the agricultural fungicide Maneb.

Environmental fate

Chemical/Physical. Absorbs carbon dioxide forming carbonates (Patnaik, 1992; Windholz et al., 1983). At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent concentration of 893 mg/L. The adsorbability of the carbon used was 21 mg/g carbon (Guisti et al., 1974).

Metabolism

EDA is absorbed through the skin (Beard and Noe 1981). The penetration rates, distribution and excretion of topically applied [14C]-ethylenediamine have been studied in the rat (Yang et al 1987). Male Wistar rats were percutaneously exposed to solutions of 10, 25 or 50% EDA over about 10% of the body surface. Absorption of EDA was concentration dependent, with about 12, 55 and 61% being absorbed at the 70, 25 and 50% concentration respectively. The terminal plasma half-life of EDA was approximately 4.5 h and the major route of excretion was via the urine. The authors concluded that skin absorption is relatively low and the reduced absorption at higher EDA concentrations may be due to epidermal damage. When male rats were given 5, 50 or 500 mg/kg doses of [14C]-EDA by oral, endotracheal and i.v. routes, urinary excretion accounted for 42-65% of the administered radioactivity (Yang and Tallant 1982). Fecal excretion amounted to 5-32% of the dose, depending on the route and 6-9% was eliminated in expired air as 14CO2. As the dosage increased from 5 to 50 to 500 mg/kg, there was a pattern of accumulated tissue EDA with a corresponding decrease in metabolite formation. The route of administration did not appear to change the metabolic profile. The major urinary metabolite in the rat was N-acetylethylenediamine (Yang and Tallant 1982). Cotgreave and Caldwell (1983) found that EDA was not detectable in the plasma 2 h after oral and i.v. administration of aminophylline in three healthy human subjects. Davies et al (1983) observed that ethylenediamine uptake in rat brain slices was temperature-dependent and appeared to take place by both sodium dependent and sodium independent mechanisms. Yang et al (1984a) demonstrated age- and, to a lesser extent, sex-related differences in the pharmacokinetics of EDA in Fischer 344 rats.

Shipping

UN1604 Ethylenediamine, Hazard class: 8; Labels: 8-Corrosive material, 3-Flammable liquid

Purification Methods

It forms a constant-boiling (b 118.5o, monohydrate, m 10o) mixture with water (23w/w%). [It is hygroscopic and miscible with water.] Recommended purification procedure [Asthana & Mukherjee in J.F.Coetzee (ed), Purification of Solvents, Pergamon Press, Oxford, 1982 cf p 53]: to 1L of ethylenediamine is added 70g of type 5A Linde molecular sieves and shaken for 12hours. The liquid is decanted and shaken for a further 12hours with a mixture of CaO (50g) and KOH (15g). The supernatant is fractionally distilled (at 20:1 reflux ratio) in contact with freshly activated molecular sieves. The fraction distilling at 117.2o /760mm is collected. Finally it is fractionally distilled from sodium metal. All distillations and storage of ethylenediamine should be carried out under nitrogen to prevent reaction with CO2 and water. The material containing 30% water is dried with solid NaOH (600g/L) and heated on a water bath for 10hours. Above 60o, separation into two phases takes place. The hot ethylenediamine layer is decanted off, refluxed with 40g of sodium for 2hours and distilled [Putnam & Kobe Trans Electrochem Soc 74 609 1938]. Ethylenediamine is usually distilled under nitrogen. Alternatively, it is dried over type 5A Linde molecular sieves (70g/L), then a mixture of 50g of CaO and 15g of KOH/L, with further dehydration of the supernatant with molecular sieves followed by distillation from molecular sieves and, finally, from sodium metal. A spectroscopically improved material is obtained by shaking with freshly baked alumina (20g/L) before distillation. [Beilstein 4 IV 1166.]

Incompatibilities

Vapor may form explosive mixture with air. Ethylenediamine is a medium strong base. Violent reaction with strong acids; strong oxidizers; chlorinated organic compounds; acetic acid; acetic anhydride; acrolein, acrylic acid; acrylonitrile, allyl chloride; carbon disulfide; chlorosulfonic acid; epichlorohydrin, ethylene chlorohydrin, oleum, methyl oxide; vinyl acetate. Also incompatible with silver perchlorate, 3-propiolactone, mesityl oxide; ethylene dichloride; organic anhydrides; isocyanates, acrylates, substituted allyls; alkylene oxides; ketones, aldehydes, alcohols, glycols, phenols, cresols, caprolactum solution. Attacks aluminum, copper, lead, tin, zinc, and alloys; some plastics, rubber, and coatings.

Check Digit Verification of cas no

The CAS Registry Mumber 107-15-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 7 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 107-15:
(5*1)+(4*0)+(3*7)+(2*1)+(1*5)=33
33 % 10 = 3
So 107-15-3 is a valid CAS Registry Number.
InChI:InChI=1/C2H8N2/c3-1-2-4/h1-4H2

107-15-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name ethylenediamine

1.2 Other means of identification

Product number -
Other names 1.2-Diamino-dekan

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Agricultural chemicals (non-pesticidal),Corrosion inhibitors and anti-scaling agents,Functional fluids (closed systems),Intermediates,Ion exchange agents,Lubricants and lubricant additives,Paint additives and coating additives not described by other categories
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:107-15-3 SDS

107-15-3Related news

Stepwise pretreatment of aqueous ammonia and Ethylenediamine (cas 107-15-3) improve enzymatic hydrolysis of corn stover08/20/2019

It is a trade-off between sugar loss in pretreatment and sugar release in hydrolysis for most pretreatment. Here, a stepwise mild pretreatments of aqueous ammonia pretreatment and ethylenediamine was developed to reduce the sugar loss during pretreatment process and improve the sugar release in ...detailed

107-15-3Relevant articles and documents

Mathew, Suresh,Nair, C. G. R.,Ninan, K. N.

, p. 269 - 294 (1991)

Low-Temperature Reductive Aminolysis of Carbohydrates to Diamines and Aminoalcohols by Heterogeneous Catalysis

Pelckmans, Michiel,Vermandel, Walter,Van Waes, Frederik,Moonen, Kristof,Sels, Bert F.

, p. 14540 - 14544 (2017)

Short amines, such as ethanolamines and ethylenediamines, are important compounds in today's bulk and fine chemicals industry. Unfortunately, current industrial manufacture of these chemicals relies on fossil resources and requires rigorous safety measures when handling explosive or toxic intermediates. Inspired by the elegant working mechanism of aldolase enzymes, a novel heterogeneously catalyzed process—reductive aminolysis—was developed for the efficient production of short amines from carbohydrates at low temperature. High-value bio-based amines containing a bio-derived C2 carbon backbone were synthesized in one step with yields up to 87 C%, in the absence of a solvent and at a temperature below 405 K. A wide variety of available primary and secondary alkyl- and alkanolamines can be reacted with the carbohydrate to form the corresponding C2-diamine. The presented reductive aminolysis is therefore a promising strategy for sustainable synthesis of short, acyclic, bio-based amines.

Structural Basis for the Catalytic Mechanism of Ethylenediamine- N, N′-disuccinic Acid Lyase, a Carbon-Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope

Poddar, Harshwardhan,De Villiers, Jandré,Zhang, Jielin,Puthan Veetil, Vinod,Raj, Hans,Thunnissen, Andy-Mark W. H.,Poelarends, Gerrit J.

, p. 3752 - 3763 (2018)

The natural aminocarboxylic acid product ethylenediamine-N,N′-disuccinic acid [(S,S)-EDDS] is able to form a stable complex with metal ions, making it an attractive biodegradable alternative for the synthetic metal chelator ethylenediaminetetraacetic acid (EDTA), which is currently used on a large scale in numerous applications. Previous studies have demonstrated that biodegradation of (S,S)-EDDS may be initiated by an EDDS lyase, converting (S,S)-EDDS via the intermediate N-(2-aminoethyl)aspartic acid (AEAA) into ethylenediamine and two molecules of fumarate. However, current knowledge of this enzyme is limited because of the absence of structural data. Here, we describe the identification and characterization of an EDDS lyase from Chelativorans sp. BNC1, which has a broad substrate scope, accepting various mono- and diamines for addition to fumarate. We report crystal structures of the enzyme in an unliganded state and in complex with formate, succinate, fumarate, AEAA, and (S,S)-EDDS. The structures reveal a tertiary and quaternary fold that is characteristic of the aspartase/fumarase superfamily and support a mechanism that involves general base-catalyzed, sequential two-step deamination of (S,S)-EDDS. This work broadens our understanding of mechanistic diversity within the aspartase/fumarase superfamily and will aid in the optimization of EDDS lyase for asymmetric synthesis of valuable (metal-chelating) aminocarboxylic acids.

Two organically templated niobium and zinconiobium fluorophosphates: Low temperature hydrothermal syntheses of NbOF(PO4)2(C 2H10N2)2 and Zn3(NbOF) (PO4)4(C2H10N2) 2

Liu, Guang-Zhen,Zheng, Shou-Tian,Yang, Guo-Yu

, p. 231 - 237 (2007)

Two new niobium and zinconiobium fluorophosphates, NbOF(PO 4)2(C2H10N2)2 (1) and Zn3(NbOF)(PO4)4-(C2H 10N2)2 (2), have been prepared under hydrothermal conditions using ethylenediamine as a template. The structures were determined by single crystal diffraction to be triclinic, space group P1 (No. 2), a = 8.1075 (6) A, b = 9.8961 (7) A, c = 10.1420(8) A, α = 111.655(1)°, β = 111.51(1)°, γ = 93.206(1)°, V = 686.19(9) A3, and Z = 2 for 1 and orthorhombic, space group Fddd (No. 70), a = 9.1928(2) A, b = 14.2090(10) A, c = 32.2971 (6) A, V = 4218.66(12) A3, and Z = 8 for 2, respectively. Compound 1 is an infinite linear chain consisting of corner-sharing [Nb 2P2] 4-MRs bridged at the Nb centers with organic amines situated between chains, and compound 2, containing the chains similar to that in 1, forms a zeotype framework with organic amines situated in the gismondine-type [4684] cavities. The topology of 2 was previously unknown with vertex symbol 4·4·4·4· 8·8 (vertex 1), 4·4·4·82·8· 8 (vertex 2), 4·4·8·8·82·8 2 (vertex 3), and 4·4·4·8 2·8·8 (vertex 4). The topological relationships between the 4-connected network of 2 and several reported (3,4)-connected networks were discussed.

-

Tkaczynski,Kotelko

, (1958)

-

Synthesis, characterization and kinetics properties of chromium(III) complex [Cr(3-HNA)(en)2]Cl · H2O · CH3OH

Liu, Bin,Li, Ying-qi,Yang, Bin-Sheng

, p. 367 - 370 (2007)

The reaction of chromium(III) chloride, 3-hydroxy-2-naphthoic acid (3-HNA) and ethylenediamine (en) led to the formation of complex [Cr(3-HNA)(en)2]Cl · H2O · CH3OH, Bis(ethylenediamine-κ2N,N′)(3-hydroxy-2-napht

Durham, D. A.,Hart, F. A.

, p. 145 - 157 (1969)

-

Lee,Hahn

, p. 6420,6424 (1969)

-

Intramolecular Nucleophilic and General Acid Catalysis in the Hydrolysis of an Amide. Some Comments on the Mechanism of Catalysis by Serine Proteases

Morris, Jeffrey J.,Page, Michael I.

, p. 1131 - 1136 (1980)

The lactonisation of N-(2-aminoethyl)-6-endo-hydroxybicycloheptane-2-endo-carboxamide shows a sigmoid pH-rate profile which is interpreted, kinetically, in terms of the hydroxide-ion-catalysed hydrolysis of the amide with the terminal amino-group unprotonated and protonated.Reaction of the latter species occurs with a rate enhancement of ca. 109 compared with an amide lacking the hydroxy- and protonated amino-groups.This is attributed to intramolecular nucleophilic and general acid-catalysis.The relative effectiveness of these two processes are compared and it is concluded that intramolecular general acid-catalysis makes a relatively minor contribution to the rate enhancement even though the breakdown of the tetrahedral intermediate is thought to be a concerted process.Some comments are made about the mechanisms proposed for the chymotrypsin-catalysed hydrolysis of amides and concerted breakdown of the tetrahedral intermediate is suggested as a possible mechanism.

Ethylenediamine and Aminoacetonitrile Catalyzed Decarboxylation of Oxalacetate

Leussing, Daniel L.,Raghavan, N. V.

, p. 5635 - 5643 (1980)

Monoprotonated ethylenediamine (ENH+) and aminoacetonitrile (AAN) are highly effective catalysts for the decarboxylation of oxalacetate (OA2-) with the latter amine showing 50percent faster rates.The mechanisms of the reactions are the same as that earlier proposed by Guthrie and Jordan from studies on the carboxylation of acetoacetate (AA-): amine and keto acid react to form ketimine which either decarboxylates or is competitively converted to enamine.We find that a prton is required to effect decarboxylation, but it also promotes enamine formation, the more so the greater basicity of the parent amine.Owing to this side reaction, the more basic amines tend to show lower catalytic activity with respect to decarboxylation. a second effect also contributes to the high activity of AAN: even though the rate constants for imine formation appear to be roughly similar with AAN and ENH+, proton catalysis has a much larger net influence on the AAN rate because changes in +> are not canceled by inverse changes in . 4-Ethyloxalacetate forms an adduct with ENH+ that has a considerably greater enamine content and a higher stability than its OA2- analogue.These differences in substrate behavior must be taken into account when esters are used as models for the parent keto acids in these reactions.Comparison of our results with those previously published for OA2- decarboxylation catalyzed by a partially quaternized poly(ethylenimine) suggests that OA2- is predominantly bound to the quaternary amine sites but decarboxylation likely proceeds via a Schiff-base mechanism.

Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group

Mertz, Eric,Beil, James B.,Zimmerman, Steven C.

, p. 3127 - 3130 (2003)

(Matrix presented) (Trifluoroacetyl)azobenzene dyes were previously employed as amine reporter groups (chemosensors) in a dendrimer-based monomolecular imprinting system. Kinetic and binding studies with a range of amines and diamines show that the highly selective signaling observed for alkane diamines by these imprinted dendrimers arises from a kinetic effect due to intramolecular general base-catalyzed carbinolamine formation with the dye itself. The relationship between diamine structure and carbinolamine stability and rate of formation is described.

7-(Imidazolidin-1-ylmethyl)quinolin-8-ol: An unexpected product from a mannich-type reaction in basic medium

Rivera, Augusto,Rios-Motta, Jaime,Navarro, Miguel Angel

, p. 531 - 537 (2006)

7-(Imidazolidin-1-ylmethyl)quinoline-8-ol, an N-substituted imidazolidine, was synthesized in a one-step reaction between 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) and 8-hydroxyquinoline. Obtaining this substance enhanced the scope of possibilities in the synthesis of unsymmetrically N,N-disubstituted imidazolidines. 1H-NMR spectral studies revealed that this type of substance does not undergo ring-chain tautomerism.

Effect of Re promoter on the structure and catalytic performance of Ni-Re/Al2O3 catalysts for the reductive amination of monoethanolamine

Ma, Lei,Yan, Li,Lu, An-Hui,Ding, Yunjie

, p. 8152 - 8163 (2018)

In this paper, Ni/Al2O3 catalysts (15 wt% Ni) with different Re loadings were prepared to investigate the effect of Re on the structure and catalytic performance of Ni-Re/Al2O3 catalysts for the reductive amination of monoethanolamine. Reaction results reveal that the conversion and ethylenediamine selectivity increase significantly with increasing Re loading up to 2 wt%. Ni-Re/Al2O3 catalysts show excellent stability during the reductive amination reaction. The characterization of XRD, DR UV-Vis spectroscopy, H2-TPR, and acidity-basicity measurements indicates that addition of Re improves the Ni dispersion, proportion of octahedral Ni2+ species, reducibility, and acid strength for Ni-Re/Al2O3 catalysts. The Ni15 and Ni15-Re2 catalysts were chosen for in-depth study. The results from SEM-BSE, TEM, and CO-TPD indicate that smaller Ni0 particle size and higher Ni0 surface area are obtained in the reduced Ni-Re/Al2O3 catalysts. Results from in situ XPS and STEM-EDX line scan suggest that Re species show a mixture of various valances and have a tendency to aggregate on the surface of Ni0 particles. During reaction, the Ni0 particles on the Al2O3 support are stabilized and the sintering process is effectively suppressed by the incorporation of Re. It could be concluded that sufficient Ni0 sites, the collaborative effect of Ni-Re, and brilliant stability contribute to the excellent catalytic performance of Ni-Re/Al2O3 catalysts for the reductive amination of monoethanolamine.

Applications of dynamic combinatorial chemistry for the determination of effective molarity

Ciaccia, Maria,Tosi, Irene,Baldini, Laura,Cacciapaglia, Roberta,Mandolini, Luigi,Di Stefano, Stefano,Hunter, Christopher A.

, p. 144 - 151 (2015)

A new strategy for determining thermodynamic effective molarities (EM) for macrocylisation reactions using dynamic combinatorial chemistry under dilute conditions is presented. At low concentrations, below the critical value, Dynamic Libraries (DLs) of bifunctional building blocks contain only cyclic species, so it is not possible to quantify the equilibria between linear and cyclic species. However, addition of a monofunctional chain stopper can be used to promote the formation of linear oligomers allowing measurement of EM for all cyclic species present in the DL. The effectiveness of this approach was demonstrated for DLs generated from mixtures of 1,3-diimine calix[4]arenes, linear diaminoalkanes and monoaminoalkanes. For macrocycles deriving from one bifunctional calixarene and one diamine, there is an alternating pattern of EM values with the number of methylene units in the diamine: odd numbers give significantly higher EMs than even numbers. For odd numbers of methylene units, the alkyl chain can adopt an extended all anti conformation, whereas for even numbers of methylene units, gauche conformations are required for cyclisation, and the associated strain reduces EM. The value of EM for the five-carbon linker indicates that this macrocycle is a strainless ring. This journal is

PREPARATION METHOD OF ETHYLENEDIAMINE

-

Paragraph 0048-0049; 0053-0054; 0058-0061, (2021/06/01)

A dehydrogenation reaction step in which (A) monoethanolamine is dehydrogenated to form aminoacetaldehyde in the presence of a reductive amination catalyst containing cobalt, scandium, and palladium as an active ingredient. A dehydration reaction step of contacting (B) said aminoacetaldehyde with an amine compound to form iminoethanamine. A hydrogenation process wherein (C) is contacted with iminoethaneamine and hydrogen to form ethylenetriamine. Method for manufacturing a semiconductor device A process for the preparation of ethyleneamine.

METHOD FOR PRODUCING ETHANOLAMINES AND/OR ETHYLENEAMINES

-

Paragraph 0250-0257, (2020/04/09)

The present invention relates to a process for preparing ethanolamines and/or ethyleneamines in the gas phase by reacting ethylene glycol with ammonia in the presence of an amination catalyst. It is a characteristic feature of the process that the amination catalyst is prepared by reducing a calcined catalyst precursor comprising an active composition, where the active composition comprises one or more active metals selected from the group consisting of the elements of groups 8, 9, 10 and 11 of the Periodic Table of the Elements and optionally one or more added catalyst elements selected group consisting of the metals and semimetals of groups 3 to 7 and 12 to 17, the element P and the rare earth elements. It is a further characteristic feature of the process that a catalyst precursor having low basicity is used, the low basicity being achieved in that a) the catalyst precursor is prepared by coprecipitation and the active composition additionally comprises one or more basic elements selected from the group consisting of the alkali metals and alkaline earth metals; orb) the catalyst precursor, as well as the active composition, additionally comprises a support material and is prepared by impregnating the support material or precipitative application onto the support material and the support material comprises one or more basic elements selected from the group consisting of the alkali metals, Be, Ca, Ba and Sr or one or more minerals selected from the group consisting of hydrotalcite, chrysotile and sepiolite; orc) the catalyst precursor, as well as the active composition, additionally comprises a support material and is prepared by impregnating the support material or precipitative application onto the support material and the active composition of the catalyst support comprises one or more basic elements selected from the group consisting of the alkali metals and the alkaline earth metals; ord) the catalyst precursor is calcined at temperatures of 600° C. or more; ore) the catalyst precursor is prepared by a combination of variants a) and d) or by a combination of variants b) and d) or by a combination of variants c) and d).