Welcome to LookChem.com Sign In|Join Free

CAS

  • or

108-87-2

Post Buying Request

108-87-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

108-87-2 Usage

General Description

Methylcyclohexane is an organic compound with a chemical formula of C7H14 and is classified as a saturated hydrocarbon. It is a colorless, flammable liquid with a faint odor, derived from the cyclohexane ring, with a methyl group (CH3) attached to one of its carbons. This substance is used in various industrial applications, including as an adhesive, binding agent, or diluent. It's used as a solvent in various processes, in the resin and rubber industry, and in the production of other chemicals. It has a low boiling point and it is insoluble in water. It can cause skin, eye, and respiratory irritation in case of direct exposure.

Check Digit Verification of cas no

The CAS Registry Mumber 108-87-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 8 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 108-87:
(5*1)+(4*0)+(3*8)+(2*8)+(1*7)=52
52 % 10 = 2
So 108-87-2 is a valid CAS Registry Number.
InChI:InChI=1/C7H14/c1-7-5-3-2-4-6-7/h7H,2-6H2,1H3

108-87-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A16057)  Methylcyclohexane, 99%   

  • 108-87-2

  • 100ml

  • 204.0CNY

  • Detail
  • Alfa Aesar

  • (A16057)  Methylcyclohexane, 99%   

  • 108-87-2

  • 500ml

  • 492.0CNY

  • Detail
  • Alfa Aesar

  • (A16057)  Methylcyclohexane, 99%   

  • 108-87-2

  • 2500ml

  • 766.0CNY

  • Detail
  • Alfa Aesar

  • (31861)  Methylcyclohexane, 99+%   

  • 108-87-2

  • 100g

  • 425.0CNY

  • Detail
  • Alfa Aesar

  • (31861)  Methylcyclohexane, 99+%   

  • 108-87-2

  • 500g

  • 810.0CNY

  • Detail
  • Sigma-Aldrich

  • (300306)  Methylcyclohexane  anhydrous, ≥99%

  • 108-87-2

  • 300306-100ML

  • 994.50CNY

  • Detail
  • Sigma-Aldrich

  • (300306)  Methylcyclohexane  anhydrous, ≥99%

  • 108-87-2

  • 300306-1L

  • 2,033.46CNY

  • Detail
  • Sigma-Aldrich

  • (259691)  Methylcyclohexane  spectrophotometric grade, 99%

  • 108-87-2

  • 259691-1L

  • 2,201.94CNY

  • Detail
  • Sigma-Aldrich

  • (259691)  Methylcyclohexane  spectrophotometric grade, 99%

  • 108-87-2

  • 259691-2L

  • 3,211.65CNY

  • Detail
  • Sigma-Aldrich

  • (M37889)  Methylcyclohexane  ReagentPlus®, 99%

  • 108-87-2

  • M37889-1L

  • 228.15CNY

  • Detail
  • Sigma-Aldrich

  • (M37889)  Methylcyclohexane  ReagentPlus®, 99%

  • 108-87-2

  • M37889-2.5L

  • 2,375.10CNY

  • Detail
  • Sigma-Aldrich

  • (M37889)  Methylcyclohexane  ReagentPlus®, 99%

  • 108-87-2

  • M37889-20L

  • 9,810.45CNY

  • Detail

108-87-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name Methylcyclohexane

1.2 Other means of identification

Product number -
Other names Methylcyclohexane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Adhesives and sealant chemicals,Fuels and fuel additives,Functional fluids (closed systems),Solvents (which become part of product formulation or mixture)
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:108-87-2 SDS

108-87-2Synthetic route

methyl cyclohexane
82166-21-0

methyl cyclohexane

Methylcyclohehane cation radical
108-87-2

Methylcyclohehane cation radical

Conditions
ConditionsYield
With Nitrogen dioxide at -140.1℃; Thermodynamic data; Rate constant; Irradiation; activation energy;
In various solvent(s) at -269℃; irradiation with γ-rays;

108-87-2Related news

Comparison of liquid hydrogen, Methylcyclohexane (cas 108-87-2) and ammonia on energy efficiency and economy08/21/2019

Among several candidates of hydrogen storage, liquid hydrogen, methylcyclohexane (MCH), and ammonia are considered as potential hydrogen carriers, in terms of their characteristics, application feasibility, and economic performance. In addition, as a main motor in the hydrogen introduction, Japa...detailed

Full Length ArticleExperimental and comparative modeling study of high temperature and very high pressure Methylcyclohexane (cas 108-87-2) pyrolysis08/20/2019

Three sets totaling 118 individual methylcyclohexane shock tube pyrolysis experiments were completed at nominal pressures of 40, 100, and 200 bar to obtain species data and to determine whether the formation of alkylcyclopentanes, which have been found to be sooting and coking precursors in prev...detailed

108-87-2Relevant articles and documents

Ionization Energies and Entropies of Cycloalkanes. Kinetics of Free Energy Controlled Charge-Transfer Reactions.

Sieck, L. Wayne,Mautner, Michael

, p. 3646 - 3650 (1982)

Enthalpies and entropies of ionization (ΔH0ion and ΔS0ion) of alkylcyclohexanes, as well as cycloheptane, cyclooctane, and trans-Decalin, have been determined by charge-transfer equilibrium measurements.Values of ΔHion, in units of kcal mol-1 (or eV), range from 229.6 (9.96) for cycloheptane to 210.7 (9.14) for trans-Decalin.A major effect of alkyl substitution is observed following substitution at a site α to a tertiary hydrogen atom (as from methylcyclohexane to 1,2-dimethylcyclohexane), or following replacement of a tertiary hydrogen atom (as from methylcyclohexane to 1,1-dimethylcyclohexane).In both cases, ΔH0 ion decreases by ca. 5 kcal mol-1.Entropies of ionization are near zero for alkylcyclohexanes but range up to 5 cal deg-1 mol-1 for nonsubstituted cycloalkanes (cyclooctane).The charge-transfer reactions involving the cycloalkanes are shown to be fast processes; i.e., the sum of the reaction efficiencies (r=k/kcollision) of the forward and reverse processes is near unity.The efficiencies of these processes appear to be determined uniquely by the overall free energy change (or equilibrium constant K).Specifically, the reaction efficiencies are defined, within a factor of 2 by the relation r=K/(1+K), which can be justified by using transition-state theory applied to the decomposition of a collision complex over surfaces lacking energy barriers.These reactions are defined as intrinsically fast processes in that they are slowed only by the overall reaction thermochemistry and not by any properties or reactions of the intermediate complex.

Radical Cations of Cyclohexanes Alkyl-substituted on One Carbon: An ESR Study of the Jahn-Teller Distorted HOMO of Cyclohexane

Shiotani, Masaru,Lindgren, Mikael,Ohta, Nobuaki,Ichikawa, Takahisa

, p. 711 - 719 (2007/10/02)

Cation radicals of cyclohexanes alkyl-substituted on one carbon have been stabilized in perfluoromethylcyclohexane and other halocarbon matrices at 4.2 K and studied by means of ESR spectroscopy.It was found that all have an electronic ground state resembling the 2Ag state of the cyclohexane cation, one of the possible states following a Jahn-Teller distortion of the D3d cyclohexane chair structure.The cations can be classified into two groups depending on the substituted alkyl group.To the first group belong the cations with a methyl group or a primary carbon (ethyl, n-propyl or isobutyl group) attached to the ring.The disubstituted cyclohexane cations of 1,1-dimethylcyclohexane and 1-methyl-1-ethylcyclohexane were also found to have a similar structure.The ESR spectra are characterized by a 1:2:1 three-line pattern with the hyperfine (hf) splitting due to two magnetically equivalent equatorial ring hydrogens.The magnitude of the splitting was found to depend on the size and number of substituents, ranging from 74 G (methylcyclohexane.+) to 55 G (isobutylcyclohexane.+).An additional doublet, 17-34 G, due to a hydrogen on the substituent could be detected in certain cases.Such hydrogens are axial with one of the elongated C-C bonds in the ring structure which contains a relatively large fraction of the unpaired electron.It follows that the substituents are located asymmetrically with respect to an ag-like SOMO in the ring.In the second group a secondary or tertiary carbon connects the substituent to the ring, such as an isopropyl or tert-butyl group.The largest hf splittings are ca. 30 G in magnitude, due to certain hydrogens on the substituent which are axial with respect to the cyclohexyl bond.It follows that an ag-like SOMO in the ring here is symmetrically arranged with respect to the position of the substituent.Hyperconjugation is the dominating mechanism for the spin transfer in all cations reported in this study.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 108-87-2