111119-36-9Relevant articles and documents
Telescopic one-pot condensation-hydroamination strategy for the synthesis of optically pure L-phenylalanines from benzaldehydes
Parmeggiani, Fabio,Ahmed, Syed T.,Weise, Nicholas J.,Turner, Nicholas J.
, p. 7256 - 7262 (2016/10/26)
A chemo-enzymatic telescopic approach was designed for the synthesis of L-arylalanines in high yield and optical purity, starting from commercially available and inexpensive substituted benzaldehydes. The method exploits a chemical Knoevenagel–Doebner condensation (optimised to give complete conversions in a short reaction time, employing microwave irradiation) and a biocatalytic phenylalanine ammonia lyase mediated hydroamination (for the stereoselective addition of ammonia). The two reactions can be run sequentially in one pot, bringing together the advantages of chemical and biological catalysis. The preparative applicability was demonstrated with the synthesis of five L-dihalophenylalanines (71–84% yield, 98–99% ee) of relevance as molecular probes, for medicinal chemistry and for the synthesis of pharmaceutical ingredients.
Asymmetric synthesis of unnatural amino acids and tamsulosin chiral intermediate
Arava, Veera Reddy,Amasa, Srinivasulu Reddy,Goud Bhatthula, Bharat Kumar,Kompella, Laxmi Srinivas,Matta, Venkata Prasad,Subha
supporting information, p. 2892 - 2897 (2013/09/02)
An efficient and enantioselective hydrogenation of N-acetylamino phenyl acrylic acids was successfully developed by using ruthenium catalyst. This methodology is important in the field of pharmaceuticals and provides a new process for the preparation of unnatural amino acids and tamsulosin chiral intermediate.
Use of whole cell culture of Aeromonas sp. as enantioselective scavenger: A facile preparation of l-amino acid derivatives in high enantiomeric excess
Zhang, Zizhang
experimental part, p. 1129 - 1131 (2009/09/04)
The bacterium Aeromonas sp. (CGMCC 2226) can enantioselectively scavenge d-isomer, making l-amino acid derivatives (AADs) in high ee. The enantioselective scavenger (ES) has shown a broad substrate scope. Eleven l-AADs, Phe derivatives substituted with methyl-, mono- and dichloro-, bromo-, and nitro-group, were produced in high ee from corresponding racemates.