1117-33-5Relevant articles and documents
N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3
Shimizu, Ken-Ichi,Kanno, Shota,Kon, Kenichi,Hakim Siddiki,Tanaka, Hideyuki,Sakata, Yoshihisa
, p. 134 - 138 (2014)
Nickel nanoparticles loaded onto calcium silicate (Ni/CaSiO3) have been prepared by ion-exchange method followed by in situ H 2-reduction of the calcined precursor. Ni/CaSiO3 was found to be effective for the catalytic direct synthesis of primary amines from alcohols and NH3 under relatively mild conditions. Various aliphatic alcohols are tolerated, and the turnover number (TON) was higher than those of Ru-based homogeneous catalysts. The catalyst was recoverable and was reused. Effects of the surface oxidation states and particle size of Ni on the catalytic activity were studied by infrared (IR) investigation of the states of adsorbed CO and transmission electron microscopy (TEM). It is clarified that the surface Ni0 sites on small (3 nm) sized Ni nanoparticles are the catalytically active species. Ni/CaSiO3 was also effective for the alkylation of anilines and aliphatic amines with various alcohols (benzyl and aliphatic alcohols) under additive free conditions; primary amines were converted into secondary amines and secondary amines into tertiary amines.
Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia
Shimizu, Ken-Ichi,Kon, Kenichi,Onodera, Wataru,Yamazaki, Hiroshi,Kondo, Junko N.
, p. 112 - 117 (2013/03/29)
This paper reports the synthesis of primary amines from alcohols and NH3 by an Al2O3-supported Ni nanoparticle catalyst as the first example of heterogeneous and noble-metal-free catalytic system for this reaction without additional hydrogen sources under relatively mild conditions. Various aliphatic alcohols are tolerated, and turnover numbers were higher than those of Ru-based homogeneous catalysts. The catalyst was recoverable and was reused. The effects of the Ni oxidation states and the acid-base nature of support oxides on the catalytic activity are studied. It is clarified that the surface metallic Ni sites are the catalytically active species, and the copresence of acidic and basic sites on the support surface is also indispensable for this catalytic system.