Welcome to LookChem.com Sign In|Join Free

CAS

  • or

112-95-8

Post Buying Request

112-95-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

112-95-8 Usage

Chemical Properties

colourless crystals or wax-like solid

Uses

Different sources of media describe the Uses of 112-95-8 differently. You can refer to the following data:
1. Eicosane is a long chain saturated aliphatic hydrocarbon. Eicosane has a high flashpoint which makes it an inefficient fuel for use in the petrochemical industry. Eicosane is used to form candles and paraffin waxes with solar energy storage capacity.
2. n-Eicosane is a saturated aliphatic hydrocarbon, which is used to form candles and paraffin waxes with solar energy storage capacity. It is also used in cosmetics, lubricants, plasticizers and in the petrochemical industry. Further, it is useful for special surfactants and in the preparation of certain organic chemicals. In addition to this, it is used as a chromatographic analysis reference material.

General Description

Colorless crystals or white crystalline solid.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Saturated aliphatic hydrocarbons, such as N-EICOSANE, may be incompatible with strong oxidizing agents like nitric acid. Charring of the hydrocarbon may occur followed by ignition of unreacted hydrocarbon and other nearby combustibles. In other settings, aliphatic saturated hydrocarbons are mostly unreactive. They are not affected by aqueous solutions of acids, alkalis, most oxidizing agents, and most reducing agents. When heated sufficiently or when ignited in the presence of air, oxygen or strong oxidizing agents, they burn exothermically to produce carbon dioxide and water.

Fire Hazard

N-EICOSANE is combustible.

Purification Methods

Crystallise eicosane from EtOH. [Beilstein 1 IV 563.]

Check Digit Verification of cas no

The CAS Registry Mumber 112-95-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,1 and 2 respectively; the second part has 2 digits, 9 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 112-95:
(5*1)+(4*1)+(3*2)+(2*9)+(1*5)=38
38 % 10 = 8
So 112-95-8 is a valid CAS Registry Number.
InChI:InChI=1/C20H42/c1-3-5-7-9-11-13-15-17-19-20-18-16-14-12-10-8-6-4-2/h3-20H2,1-2H3

112-95-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A13853)  n-Eicosane, 99%   

  • 112-95-8

  • 25g

  • 204.0CNY

  • Detail
  • Alfa Aesar

  • (A13853)  n-Eicosane, 99%   

  • 112-95-8

  • 100g

  • 381.0CNY

  • Detail
  • Sigma-Aldrich

  • (44818)  Eicosane  analytical standard

  • 112-95-8

  • 44818-1G

  • 216.45CNY

  • Detail
  • Sigma-Aldrich

  • (44818)  Eicosane  analytical standard

  • 112-95-8

  • 44818-5G

  • 838.89CNY

  • Detail
  • Aldrich

  • (219274)  Eicosane  99%

  • 112-95-8

  • 219274-5G

  • 237.51CNY

  • Detail
  • Aldrich

  • (219274)  Eicosane  99%

  • 112-95-8

  • 219274-100G

  • 380.25CNY

  • Detail
  • Aldrich

  • (219274)  Eicosane  99%

  • 112-95-8

  • 219274-500G

  • 2,564.64CNY

  • Detail
  • Supelco

  • (442673)  Eicosane  analytical standard

  • 112-95-8

  • 000000000000442673

  • 234.00CNY

  • Detail

112-95-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name icosane

1.2 Other means of identification

Product number -
Other names octyldodecane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:112-95-8 SDS

112-95-8Synthetic route

1-Eicosene
3452-07-1

1-Eicosene

icosane
112-95-8

icosane

Conditions
ConditionsYield
With hydrogen; TMSB; palladium In ethanol at 20℃; under 760 Torr; for 16h;98%
Iododecane
2050-77-3

Iododecane

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

Conditions
ConditionsYield
With tetrabutylammonium tetrafluoroborate In N,N-dimethyl-formamide Electrochemical reaction; Inert atmosphere;A 1%
B 97%
With sodium polystyrylanthracene Product distribution;A 25%
B 4%
1-bromo dodecane
112-29-8

1-bromo dodecane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With pyridine; manganese; trifluoroacetic acid; cobalt(II) bromide In acetonitrile at 50℃;87%
n-decyl magnesium bromide
17049-50-2

n-decyl magnesium bromide

benzophenone N-methyl-N,N-pentane-1,5-diylhydrazonium iodide
13134-23-1

benzophenone N-methyl-N,N-pentane-1,5-diylhydrazonium iodide

A

N-methylcyclohexylamine
626-67-5

N-methylcyclohexylamine

B

Benzophenone imine
1013-88-3

Benzophenone imine

C

decane
124-18-5

decane

D

icosane
112-95-8

icosane

E

1-Decene
872-05-9

1-Decene

Conditions
ConditionsYield
In diethyl ether Product distribution; Mechanism; Heating; other quaternary hydrazonium salts, other alkylmagnesium halides;A 85%
B 84%
C 51%
D 21%
E 25%
9-octyl-9-bora-bicyclo[3.3.1]nonane
30089-00-0

9-octyl-9-bora-bicyclo[3.3.1]nonane

1-chlorododecane
112-52-7

1-chlorododecane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With cesium hydroxide; tris(dibenzylideneacetone)dipalladium (0); tricyclohexylphosphine In 1,4-dioxane at 90℃; for 48h; Suzuki cross-coupling;83%
9-octyl-9-bora-bicyclo[3.3.1]nonane
30089-00-0

9-octyl-9-bora-bicyclo[3.3.1]nonane

dodecyl 4-methylbenzenesulphonate
10157-76-3

dodecyl 4-methylbenzenesulphonate

icosane
112-95-8

icosane

Conditions
ConditionsYield
With palladium diacetate; sodium hydroxide; di-tert-butyl(methyl)phosphonium tetrafluoroborate salt In 1,4-dioxane at 50℃; Product distribution; Further Variations:; Reagents; Temperatures; reaction times; Suzuki cross-coupling;82%
With copper(l) iodide; lithium tert-butoxide In N,N-dimethyl-formamide at 80℃; for 24h; Suzuki-Miyauri coupling; Inert atmosphere;64%
1-bromo dodecane
112-29-8

1-bromo dodecane

A

icosane
112-95-8

icosane

B

1-Decanol
112-30-1

1-Decanol

Conditions
ConditionsYield
Stage #1: 1-bromo dodecane With magnesium In tetrahydrofuran Grignard Reaction; Inert atmosphere; Reflux;
Stage #2: With dilithium tetrachlorocuprate(II); oxygen In tetrahydrofuran at 20℃; for 2h;
A 60%
B 36%
9-octyl-9-bora-bicyclo[3.3.1]nonane
30089-00-0

9-octyl-9-bora-bicyclo[3.3.1]nonane

dodecyl mesylate
51323-71-8

dodecyl mesylate

icosane
112-95-8

icosane

Conditions
ConditionsYield
With palladium diacetate; sodium hydroxide; methyldi-t-butylphosphine In 1,4-dioxane at 50℃; Suzuki cross-coupling;51%
1-heptyl 4-methylbenzenesulfonate
24767-82-6

1-heptyl 4-methylbenzenesulfonate

tert-butylmagnesium chloride
677-22-5

tert-butylmagnesium chloride

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

C

2,2-dimethylnonane
17302-14-6

2,2-dimethylnonane

Conditions
ConditionsYield
With CuBr*Me2S-LiBr; lithium thiophenoxide In tetrahydrofuran; N,N,N,N,N,N-hexamethylphosphoric triamide at 67℃; for 24h; further reagents;A n/a
B n/a
C 50%
1-bromo dodecane
112-29-8

1-bromo dodecane

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

Conditions
ConditionsYield
With hydrogenchloride; sodium peroxide; magnesium 1.) 22 deg C, 30 min, diethyl ether; Multistep reaction;A n/a
B 25%
With hydrogenchloride; sodium peroxide; magnesium 1.) 22 deg C, 30 min, diethyl ether; Yield given. Multistep reaction;
tri(octadecyl)aluminium
3041-23-4

tri(octadecyl)aluminium

ethene
74-85-1

ethene

A

icosane
112-95-8

icosane

B

n-docosane
629-97-0

n-docosane

C

n-hexacosane
630-01-3

n-hexacosane

D

octadecane
593-45-3

octadecane

E

tetracosane
646-31-1

tetracosane

F

octacosane
630-02-4

octacosane

G

n-triacontane
638-68-6

n-triacontane

Conditions
ConditionsYield
Stage #1: tri(octadecyl)aluminium; ethene In toluene at 20 - 116℃; under 17851.8 - 42004.2 Torr; for 2 - 3h;
Stage #2: With sulfuric acid; water at 40℃; Product distribution / selectivity;
A 13.39%
B 9.99%
C 0.69%
D 10.19%
E 3.02%
F 0.13%
G 0.02%
tri(octadecyl)aluminium
3041-23-4

tri(octadecyl)aluminium

ethene
74-85-1

ethene

trioctylaluminum
1070-00-4

trioctylaluminum

A

octane
111-65-9

octane

B

decane
124-18-5

decane

C

dodecane
112-40-3

dodecane

D

icosane
112-95-8

icosane

E

n-docosane
629-97-0

n-docosane

F

n-hexacosane
630-01-3

n-hexacosane

G

hexane
110-54-3

hexane

H

tetradecane
629-59-4

tetradecane

I

Hexadecane
544-76-3

Hexadecane

J

octadecane
593-45-3

octadecane

K

tetracosane
646-31-1

tetracosane

L

octacosane
630-02-4

octacosane

M

n-triacontane
638-68-6

n-triacontane

Conditions
ConditionsYield
Stage #1: tri(octadecyl)aluminium; ethene; trioctylaluminum In toluene at 20 - 116℃; under 26252.6 - 42004.2 Torr; for 2.33333h;
Stage #2: With sulfuric acid; water at 40℃;
A 6.85%
B 11.49%
C 10.27%
D 11.49%
E 8.97%
F 1.86%
G 1.31%
H 6.01%
I 2.59%
J 8.59%
K 4.71%
L 0.6%
M 0.17%
Iododecane
2050-77-3

Iododecane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With sodium hydroxide; hydrazine hydrate; mercury dichloride; palladium dichloride for 6h; Heating;2.5%
1,5-dibromo-pentane
111-24-0

1,5-dibromo-pentane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With diethyl ether; magnesium und Zers. des Reaktionsproduktes mit Wasser;
2-hexadecylthiophene
83027-72-9

2-hexadecylthiophene

icosane
112-95-8

icosane

Conditions
ConditionsYield
With 1,4-dioxane; nickel
1,10-diiododecane
16355-92-3

1,10-diiododecane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With diethyl ether; magnesium und Zers. des Reaktionsproduktes mit Wasser;
1-iodoeicosane
34994-81-5

1-iodoeicosane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With hydrogenchloride; acetic acid; zinc
eicosan-7-one
116557-13-2

eicosan-7-one

icosane
112-95-8

icosane

Conditions
ConditionsYield
With phosphorus pentachloride und erhitzen des Reaktionsprodukts mit Jodwasserstoffsaeure und Phosphor auf 240grad;
Eicosan-3-one
2955-56-8

Eicosan-3-one

icosane
112-95-8

icosane

Conditions
ConditionsYield
With hydrazine hydrate; sodium butanolate at 200 - 215℃;
With amalgamated zinc in wss.-aethanol. HCl;
1,10-dibromodecane
4101-68-2

1,10-dibromodecane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With diethyl ether; sodium
Dichloromethylsilane
75-54-7

Dichloromethylsilane

1-bromo dodecane
112-29-8

1-bromo dodecane

A

icosane
112-95-8

icosane

B

1-Decanol
112-30-1

1-Decanol

C

Methyldi-n-decylsilane
51502-65-9

Methyldi-n-decylsilane

Conditions
ConditionsYield
With magnesium; iodine 1) Et2O, 25-30 deg C 2) 62 deg C, 12h; Yield given. Multistep reaction;
diethyl ether
60-29-7

diethyl ether

n-decyl magnesium bromide
17049-50-2

n-decyl magnesium bromide

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

C

2-n-dodecyl ethyl ether
95363-56-7

2-n-dodecyl ethyl ether

Conditions
ConditionsYield
With xenon difluoride for 4h; Ambient temperature;
decane
124-18-5

decane

decane-d22
16416-29-8

decane-d22

A

icosane
112-95-8

icosane

B

n-eicosane-d42
62369-67-9

n-eicosane-d42

C

C20H21(2)H21

C20H21(2)H21

Conditions
ConditionsYield
at -269.2℃; Irradiation;
decane
124-18-5

decane

icosane
112-95-8

icosane

Conditions
ConditionsYield
With H at -196.1℃; Mechanism; Product distribution; Irradiation; normal and perdeuteriated alkenes, other products;
1-dodecene
112-41-4

1-dodecene

icosane
112-95-8

icosane

Conditions
ConditionsYield
With oxygen; ozone 1.) methanol; 2.) methanol; Yield given. Multistep reaction;
cis-Octadecenoic acid
112-80-1

cis-Octadecenoic acid

oenanthic acid
111-14-8

oenanthic acid

A

dodecane
112-40-3

dodecane

B

icosane
112-95-8

icosane

C

n-nonadecane
629-92-5

n-nonadecane

D

(Z)-tricos-9-ene
27519-02-4

(Z)-tricos-9-ene

Conditions
ConditionsYield
With sodium In methanol; n-heptane at 30 - 35℃; for 5h; electrolysis; Further byproducts given. Title compound not separated from byproducts;A 21.6 % Chromat.
B 0.4 % Chromat.
C 3.7 % Chromat.
D 39.5 % Chromat.
1-bromo dodecane
112-29-8

1-bromo dodecane

carbon dioxide
124-38-9

carbon dioxide

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

C

heneicosan-11-one
19781-72-7

heneicosan-11-one

Conditions
ConditionsYield
With tetrabutylammonium tetrafluoroborate; (2,2'-bipyridine)nickel(II) dibromide In various solvent(s) Product distribution; Mechanism; Ambient temperature; electrolysis, -1.6 V;A 5 % Chromat.
B 15 % Chromat.
C 80 % Chromat.
With tetrabutylammonium tetrafluoroborate; (2,2'-bipyridine)nickel(II) dibromide In various solvent(s) Ambient temperature; electrolysis, -1.6 V;A 5 % Chromat.
B 15 % Chromat.
C 80 % Chromat.
n-decyl magnesium bromide
17049-50-2

n-decyl magnesium bromide

A

decane
124-18-5

decane

B

icosane
112-95-8

icosane

C

1-Decanol
112-30-1

1-Decanol

Conditions
ConditionsYield
With ammonium chloride In diethyl ether for 4h; Ambient temperature;
decanoyl dodecanoyl peroxide
25289-72-9

decanoyl dodecanoyl peroxide

A

nonane
111-84-2

nonane

B

n-Undecane
1120-21-4

n-Undecane

C

non-1-ene
124-11-8

non-1-ene

D

icosane
112-95-8

icosane

Conditions
ConditionsYield
at 110℃; Product distribution; at var. temperatures or irradiations in var. solvents, at var. temperatures further products;A n/a
B 27 % Chromat.
C n/a
D 27 % Chromat.
icosane
112-95-8

icosane

n-eicosane-d42
62369-67-9

n-eicosane-d42

Conditions
ConditionsYield
With d8-isopropanol; 5% rhodium-on-charcoal; 10% Pt/activated carbon; water-d2 at 120℃; for 24h; Sealed tube;95%
With 5% rhodium-on-charcoal; hydrogen; water-d2 at 160℃; for 12h;
icosane
112-95-8

icosane

n-docosane
629-97-0

n-docosane

n-hexacosane
630-01-3

n-hexacosane

Tridecane
629-50-5

Tridecane

octadecane
593-45-3

octadecane

tetracosane
646-31-1

tetracosane

octacosane
630-02-4

octacosane

n-triacontane
638-68-6

n-triacontane

A

1-octadecanol
112-92-5

1-octadecanol

B

n-eicosanol
629-96-9

n-eicosanol

C

melissyl alcohol
593-50-0

melissyl alcohol

D

1-docosanol
661-19-8

1-docosanol

E

tetracosyl alcohol
506-51-4

tetracosyl alcohol

F

hexacosyl alcohol
506-52-5

hexacosyl alcohol

G

octacosyl alcohol
557-61-9

octacosyl alcohol

Conditions
ConditionsYield
Stage #1: icosane; n-docosane; n-hexacosane; octadecane; tetracosane; octacosane; n-triacontane With oxygen at 30 - 50℃; under 1575.16 Torr; for 0.5h;
Stage #2: Tridecane With titanium(IV) isopropylate at 30 - 50℃; under 1575.16 - 3750.38 Torr; for 6.86667h;
Stage #3: With sulfuric acid; water at 80℃; Product distribution / selectivity;
A 17.66%
B 19.46%
C 0.1%
D 13.62%
E 6.93%
F 2.04%
G 0.48%
icosane
112-95-8

icosane

n-docosane
629-97-0

n-docosane

n-hexacosane
630-01-3

n-hexacosane

octadecane
593-45-3

octadecane

tetracosane
646-31-1

tetracosane

octacosane
630-02-4

octacosane

n-triacontane
638-68-6

n-triacontane

A

1-octadecanol
112-92-5

1-octadecanol

B

n-eicosanol
629-96-9

n-eicosanol

C

melissyl alcohol
593-50-0

melissyl alcohol

D

1-docosanol
661-19-8

1-docosanol

E

tetracosyl alcohol
506-51-4

tetracosyl alcohol

F

hexacosyl alcohol
506-52-5

hexacosyl alcohol

G

octacosyl alcohol
557-61-9

octacosyl alcohol

Conditions
ConditionsYield
Stage #1: icosane; n-docosane; n-hexacosane; octadecane; tetracosane; octacosane; n-triacontane With oxygen at 30 - 50℃; under 1575.16 - 3675.37 Torr; for 3h;
Stage #2: With sulfuric acid; water Product distribution / selectivity;
A 12.4%
B 13.4%
C 0.05%
D 7.8%
E 3.2%
F 1%
G 0.2%

112-95-8Related news

Viscosity of n-hexadecane, n-octadecane and N-EICOSANE (cas 112-95-8) at pressures up to 243 MPa and temperatures up to 534 K08/29/2019

Viscosity data are reported for n-hexadecane (C16), n-octadecane (C18), and n-eicosane (C20) at pressures between (3 and 243) MPa and temperatures between (304 and 534) K. These extreme conditions are representative of those encountered in ultra-deep petroleum formations beneath the deepwaters o...detailed

Experimental investigation of N-EICOSANE (cas 112-95-8) based circular pin-fin heat sinks for passive cooling of electronic devices08/28/2019

Efficient thermal management (TM) based on phase change material (PCM) is adopted for the cooling of portable electronic devices. PCM namely n-eicosane is employed to absorb thermal energy released by such electronics. Four different configurations of circular pin-fin heat sinks with fin thickne...detailed

Fabrication of magnetic phase change N-EICOSANE (cas 112-95-8) @ Fe3O4/SiO2 microcapsules on wood surface via sol-gel method08/24/2019

Microencapsulated phase change material (MPCM) has been recognized as one of the best technologies to improve energy efficiency and absorb redundant energy. However, magnetic phase change energy storage performance has rarely been applied on wood. In this paper, magnetic microencapsulated phase ...detailed

Research PaperAn experimental study of enhanced heat sinks for thermal management using N-EICOSANE (cas 112-95-8) as phase change material08/23/2019

This study experimentally explores the thermal performance enhancement of portable electronics; based on the n-eicosane used as a phase change material (PCM) filled pin-fin heat sinks. A constant heat flux ranging from 0.79kW/m2 to 3.17kW/m2 is applied at the base of heat sink. Comparison was ca...detailed

Thermal-regulation of nonwoven fabrics by microcapsules of N-EICOSANE (cas 112-95-8) coated with a polysiloxane elastomer08/22/2019

Synthesis of microcapsules composed of a paraffin core coated with polysiloxane, which were developed in one of our laboratories, was adapted for preparation of the microcapsules for thermoregulation of textiles. n-Eicosane with melting temperature 37 °C was used as a phase change material (PCM...detailed

Synthesis and characterization of micro-nanoencapsulated N-EICOSANE (cas 112-95-8) with PMMA shell as novel phase change materials for thermal energy storage08/21/2019

This study focuses on preparation, characterization and thermal behavior of novel micro-nanoencapsulated phase change materials (PCMs) for thermal energy storage applications. The micro-nano capsules with n-eicosane as core and poly(methyl methacrylate) (PMMA) as shell with a weight ratio of 50/...detailed

Microencapsulated N-EICOSANE (cas 112-95-8) PCM suspensions: Thermophysical properties measurement and modeling08/20/2019

This research aims to present the preparation, characterization and thermophysical properties of water-based microencapsulated n-eicosane PCM suspensions for thermal energy storage. n-eicosane PCMs are coated with urea–formaldehyde polymer shell. The microcapsules have been characterized by Fou...detailed

112-95-8Relevant articles and documents

Synthesis, characterization, and electrochemical behavior of a cobalt(II) salen-like complex

Ourari, Ali,Messali, Salima,Bouzerafa, Brahim,Ouennoughi, Yasmina,Aggoun, Djouhra,Mubarak, Mohammad S.,Strawsine, Lauren M.,Peters, Dennis G.

, p. 197 - 201 (2015)

A new tetradentate cobalt(II)-Schiff base complex has been synthesized via the reaction of the ligand 2,2′-((1E,1′E)-(ethane-1,2-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(4-((methyl(phenyl)amino)methyl)phenol) with a stoichiometric amount of cobalt(II) acetate tetrahydrate in absolute ethanol. This cobalt(II) complex has been characterized with the aid of several spectroscopic techniques (FT-IR, UV-Vis, and mass spectrometry) as well as by thermal (TGA and DTA) and elemental analysis. Cyclic voltammetry has been employed to examine the redox behavior of the cobalt(II) complex in dimethylformamide (DMF) containing 0.10 M tetra-n-butylammonium tetrafluoroborate (TBABF4). In addition, the electrogenerated cobalt(I) form of the complex has been (a) employed as a catalyst for the reduction of 1-iododecane and (b) compared with the behavior of cobalt(I) salen. Finally, the cobalt(II) complex has been subjected to anodic electropolymerization onto the surface of a glassy carbon electrode in DMF containing 0.10 M tetra-n-butylammonium perchlorate (TBAP).

Iron-catalysed sp3-sp3 cross-coupling reactions of unactivated alkyl halides with alkyl grignard reagents

Dongol, Krishna G.,Koh, Huishi,Sau, Manisankar,Chai, Christina L.L.

, p. 1015 - 1018 (2007)

Iron-catalysed sp3-sp3 Kumada coupling with primary and secondary alkyl halides (RX) and alkyl Grignard reagents has been achieved in low to good yields depending on the nature of the R group.

-

Gaoni,Y. et al.

, p. 4940 - 4945 (1968)

-

Suzuki cross-couplings of alkyl tosylates that possess beta hydrogen atoms: synthetic and mechanistic studies.

Netherton, Matthew R,Fu, Gregory C

, p. 3910 - 3912 (2002)

-

Selective Catalytic Hydrogenolysis of Carbon-Carbon σ Bonds in Primary Aliphatic Alcohols over Supported Metals

Di, Lu,Yao, Sikai,Li, Mengru,Wu, Guangjun,Dai, Weili,Wang, Guichang,Li, Landong,Guan, Naijia

, p. 7199 - 7207 (2015/12/11)

The selective scission of chemical bonds is always of great significance in organic chemistry. The cleavage of strong carbon-carbon σ bonds in the unstrained systems remains challenging. Here, we report the selective hydrogenolysis of carbon-carbon σ bonds in primary aliphatic alcohols catalyzed by supported metals under relatively mild conditions. In the case of 1-hexadecanol hydrogenolysis over Ru/TiO2 as a model reaction system, the selective scission of carbon-carbon bonds over carbon-oxygen bonds is observed, resulting in n-pentadecane as the dominant product with a small quantity of n-hexadecane. Theoretical calculations reveal that the 1-hexadecanol hydrogenolysis on flat Ru (0001) undergoes two parallel pathways: i.e. carbon-carbon bond scission to produce n-pentadecane and carbon-oxygen bond scission to produce n-hexadecane. The removal of adsorbed CO on a flat Ru (0001) surface is a crucial step for the 1-hexadecanol hydrogenolysis. It contributes to the largest energy barrier in n-pentadecane production and also retards the rate for n-hexadecane production by covering the active Ru (0001) surface. The knowledge presented in this work has significance not just for a fundamental understanding of strong carbon-carbon σ bond scission but also for practical biomass conversion to fuels and chemical feedstocks.

Oxidative coupling reactions of grignard reagents with nitrous oxide

Kiefer, Gregor,Jeanbourquin, Loic,Severin, Kay

supporting information, p. 6302 - 6305 (2013/07/19)

Catalysis with laughing gas: N2O in combination with transition-metal catalysts allow the oxidative homo- and cross-coupling of Grignard reagents. The reactions can be performed under mild conditions despite the inert character of N2O. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 112-95-8