Welcome to LookChem.com Sign In|Join Free

CAS

  • or

122-28-1

Post Buying Request

122-28-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

122-28-1 Usage

Chemical Properties

Beige crystalline to brown powder

Uses

m-Nitroacetanilide is a useful building block used in a variety of synthetic applications, such as the preparation of chalcones and N-?chloroamines.

Check Digit Verification of cas no

The CAS Registry Mumber 122-28-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,2 and 2 respectively; the second part has 2 digits, 2 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 122-28:
(5*1)+(4*2)+(3*2)+(2*2)+(1*8)=31
31 % 10 = 1
So 122-28-1 is a valid CAS Registry Number.
InChI:InChI=1/C8H8N2O3/c1-6(11)9-7-3-2-4-8(5-7)10(12)13/h2-5H,1H3,(H,9,11)

122-28-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B22062)  3'-Nitroacetanilide, 98+%   

  • 122-28-1

  • 5g

  • 308.0CNY

  • Detail
  • Alfa Aesar

  • (B22062)  3'-Nitroacetanilide, 98+%   

  • 122-28-1

  • 25g

  • 1121.0CNY

  • Detail
  • Alfa Aesar

  • (B22062)  3'-Nitroacetanilide, 98+%   

  • 122-28-1

  • 100g

  • 3521.0CNY

  • Detail
  • Aldrich

  • (644250)  3′-Nitroacetanilide  97%

  • 122-28-1

  • 644250-5G

  • 482.04CNY

  • Detail
  • Aldrich

  • (644250)  3′-Nitroacetanilide  97%

  • 122-28-1

  • 644250-25G

  • 1,565.46CNY

  • Detail

122-28-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name 3'-Nitroacetanilide

1.2 Other means of identification

Product number -
Other names 3′-Nitroacetanilide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:122-28-1 SDS

122-28-1Relevant articles and documents

SN2 mechanism for alcoholysis, aminolysis, and hydrolysis of acetyl chloride

Bentley, T. William,Llewellyn, Gareth,McAlister, J. Anthony

, p. 7927 - 7932 (1996)

First-order solvolysis rate constants are reported for solvolyses of acetyl chloride in methanol and MeOD, and in binary aqueous mixtures with acetone, acetonitrile, ethanol, methanol, and trifluoroethanol at 0°C. Product selectivities (S = [MeCOOR]/[MeCOOH] x [water]/[alcohol]) are reported for solvolyses in ethanol/ and methanol/water at 0°C. Solvolyses of acetyl chloride show a high sensitivity to changes in solvent ionizing power, consistent with C-Cl bond cleavage. As the solvent is varied from pure ethanol (or methanol) to water, S values and rate-rate profiles show no evidence for the change in reaction channel observed for solvolyses of benzoyl and trimethylacetyl chlorides. However, using rate ratios in 40% ethanol/water and 97% trifluoroethanol/ water (solvents of similar ionizing power but different nucleophilicities) to compare sensitivities to nucleophilic attack, solvolyses of acetyl chloride are over 20-fold more sensitive to nucleophilic attack than benzoyl chloride. The solvent isotope effect of 1.29 (MeOH/MeOD) for acetyl chloride is similar to that for p-methoxybenzoyl chloride (1.22) and is lower than for benzoyl chloride (1.55). Second-order rate constants for aminolyses of acetyl chloride with m-nitroaniline in methanol at 0°C show that acetyl chloride behaves similarly to p-methoxybenzoyl chloride, whereas benzoyl chloride is 40-fold more sensitive to the added amine. The results indicate mechanistic differences between solvolyses of acetyl and benzoyl chlorides, and an SN2 mechanism is proposed for solvolyses and aminolyses by m-nitroaniline of acetyl chloride (i.e. these reactions are probably not carbonyl additions, but a strong sensitivity to nucleophilic attack accounts for their high rates).

2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase

Bayliss, Richard,Boxall, Kathy,Carbain, Benoit,Coxon, Christopher R.,Fry, Andrew M.,Golding, Bernard T.,Griffin, Roger J.,Hardcastle, Ian R.,Harnor, Suzannah J.,Mas-Droux, Corine,Matheson, Christopher J.,Newell, David R.,Richards, Mark W.,Sivaprakasam, Mangaleswaran,Turner, David,Cano, Céline

supporting information, p. 707 - 731 (2020/08/24)

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 μM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 μM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 μM (Nek2); GI50 (SKBR3) 2.2 μM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 μM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 μM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2. This journal is

SO2F2-Activated Efficient Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams

Zhang, Guofu,Zhao, Yiyong,Xuan, Lidi,Ding, Chengrong

supporting information, p. 4911 - 4915 (2019/07/31)

A novel, mild and practical protocol for the efficient activation of the Beckmann rearrangement utilizing the readily available and economical sulfuryl fluoride (SO2F2 gas) has been developed. The substrate scope of the operationally simple methodology has been demonstrated by 37 examples with good to nearly quantitative isolated yields (over 90 % yield in most cases) in a short time, including B(OH)2, COOH, NH2, and OH substituted substrates. A tentative mechanism was proposed involving formation and elimination of key intermediate, sulfonyl ester.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 122-28-1