Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1475-13-4

Post Buying Request

1475-13-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1475-13-4 Usage

Chemical Properties

clear colorless liquid

Check Digit Verification of cas no

The CAS Registry Mumber 1475-13-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,4,7 and 5 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 1475-13:
(6*1)+(5*4)+(4*7)+(3*5)+(2*1)+(1*3)=74
74 % 10 = 4
So 1475-13-4 is a valid CAS Registry Number.
InChI:InChI=1/C8H8Cl2O/c1-5(11)7-3-2-6(9)4-8(7)10/h2-5,11H,1H3/t5-/m1/s1

1475-13-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(2,4-Dichlorophenyl)ethanol

1.2 Other means of identification

Product number -
Other names 1-(2,4-dichlorophenyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1475-13-4 SDS

1475-13-4Relevant articles and documents

1,3,4-Oxadiazole-functionalizedα-amino-phosphonates as ligands for the ruthenium-catalyzed reduction of ketones

Hkiri, Shaima,Gourlaouen, Christophe,Touil, Soufiane,Samarat, Ali,Sémeril, David

, p. 11327 - 11335 (2021)

Threeα-aminophosphonates, namely diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl) methyl]phosphonate (3a), diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(2-methoxyphenyl)methyl]phosphonate (3b) and diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-nitrophenyl)methyl]phosphonate (3c), were synthetizedviathe Pudovik-type reaction between diethyl phosphite and imines, obtained from 5-phenyl-1,2,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Compounds3a-cunderwent complexation with a ruthenium(ii) precursor, selectively at the more basic nitrogen atom of the oxadiazole ring, leading to the corresponding ruthenium complexes4a-cof the formula [RuCl2(L)(p-cymene)] (L= α-aminophosphonates3a-c). Complexes4a-cproved to be efficient catalysts for the transfer hydrogenation of ketones to alcohols. All new compounds were fully characterised by elemental analysis, infrared, mass and NMR spectroscopy. An X-ray structure of the α-aminophosphonate3bwas obtained and revealed the presence, in the solid state, of an infinite chain of3bunits supramolecularly interlinked. Two X-ray diffraction studies carried out on ruthenium complexes confirm the specific coordination of the electron-enricher nitrogen atom of the oxadiazole ring.

Pincerlike molybdenum complex and preparation method thereof, catalytic composition and application thereof, and alcohol preparation method

-

Paragraph 0125-0130, (2021/08/11)

The invention discloses a clamp-type molybdenum complex, a preparation method, a corresponding catalyst composition and application. The method comprises the steps: obtaining 9 molybdenum complexes with different structures through coordination reaction of 2-(substituent ethyl)-(5, 6, 7, 8-tetrahydroquinolyl) amine and a corresponding carbonyl molybdenum metal precursor; and catalyzing a ketone compound transfer hydrogenation reaction through a molybdenum complex to generate 40 alcohol compounds. The preparation method of the molybdenum complex is simple, high in yield and good in stability. For a transfer hydrogenation reaction of ketone, the molybdenum-based catalytic system has high catalytic activity and small molybdenum loading capacity, is used for production of aromatic and aliphatic alcohols, and has the advantages of simple method, small environmental pollution and high yield.

Aza-crown compounds synthesised by the self-condensation of 2-amino-benzyl alcohol over a pincer ruthenium catalyst and applied in the transfer hydrogenation of ketones

Zhang, Shanshan,Wang, Zheng,Cao, Qianrong,Yue, Erlin,Liu, Qingbin,Ma, Yanping,Liang, Tongling,Sun, Wen-Hua

supporting information, p. 15821 - 15827 (2020/11/24)

A well-defined PNN-Ru catalyst was revisited to self-condense 2-aminobenzyl alcohol in forming a series of novel aza-crown compounds [aza-12-crown-3 (1), aza-16-crown-4 (2) and aza-20-crown-5 (3)]. All aza-crown compounds are separated and determined by NMR, IR, and ESI-MS spectroscopy as well as X-ray crystallography, indicating the saddle structure of 1 and the twisted 1,3-alternate conformation structure of 3. These aza-crown compounds have been explored to study ferric initiation of transfer hydrogenation (TH) of ketones into their corresponding secondary alcohols in the presence of 2-propanol with a basic t-BuOK solution, achieving a high conversion (up to 95%) by a ferric complex with 2 in a low loading (0.05 mol%). This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1475-13-4