Welcome to LookChem.com Sign In|Join Free

CAS

  • or

17145-12-9

Post Buying Request

17145-12-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

17145-12-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 17145-12-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,1,4 and 5 respectively; the second part has 2 digits, 1 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 17145-12:
(7*1)+(6*7)+(5*1)+(4*4)+(3*5)+(2*1)+(1*2)=89
89 % 10 = 9
So 17145-12-9 is a valid CAS Registry Number.

17145-12-9Downstream Products

17145-12-9Relevant articles and documents

Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions

Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali

, p. 803 - 808 (2021/07/20)

Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].

Aldehyde effect and ligand discovery in Ru-catalyzed dehydrogenative cross-coupling of alcohols to esters

Jiang, Xiaolin,Zhang, Jiahui,Zhao, Dongmei,Li, Yuehui

, p. 2797 - 2800 (2019/03/27)

The presence of different aldehydes is found to have a significant influence on the catalytic performance when using PN(H)P type ligands for dehydrogenation of alcohols. Accordingly, hybrid multi-dentate ligands were discovered based on an oxygen-transfer alkylation of PNP ligands by aldehydes. The relevant Ru-PNN(PO) system provided the desired unsymmetrical esters in good yields via acceptorless dehydrogenation of alcohols. Hydrogen bonding interactions between the phosphine oxide moieties and alcohol substrates likely assisted the observed high chemoselectivity.

Cobalt-Catalyzed Acceptorless Dehydrogenative Coupling of Primary Alcohols to Esters

Paudel, Keshav,Pandey, Bedraj,Xu, Shi,Taylor, Daniela K.,Tyer, David L.,Torres, Claudia Lopez,Gallagher, Sky,Kong, Lin,Ding, Keying

supporting information, p. 4478 - 4481 (2018/08/09)

A novel catalytic system with a tripodal cobalt complex is developed for efficiently converting primary alcohols to esters. KOtBu is found essential to the transformation. A preliminary mechanistic study suggests a plausible reaction route that involves an initial Co-catalyzed dehydrogenation of alcohol to aldehyde, followed by a Tishchenko-type pathway to ester mediated by KOtBu.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17145-12-9