Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1817-57-8

Post Buying Request

1817-57-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1817-57-8 Usage

Uses

It is used as pharmaceutical intermediate.

Synthesis Reference(s)

Chemistry Letters, 9, p. 1327, 1980The Journal of Organic Chemistry, 47, p. 2549, 1982 DOI: 10.1021/jo00134a010Tetrahedron Letters, 29, p. 2321, 1988 DOI: 10.1016/S0040-4039(00)86048-7

General Description

4-Phenyl-3-butyn-2-one is an α,β-ketoalkyne. Reaction of 4-phenyl-3-butyn-2-one with bromine chloride and iodine monochloride in CH2Cl2, CH2Cl2/pyridine and MeOH are studied. Reduction of 4-phenyl-3-butyn-2-one in THF solution has been reported.

Check Digit Verification of cas no

The CAS Registry Mumber 1817-57-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,8,1 and 7 respectively; the second part has 2 digits, 5 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 1817-57:
(6*1)+(5*8)+(4*1)+(3*7)+(2*5)+(1*7)=88
88 % 10 = 8
So 1817-57-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H8O/c1-9(11)7-8-10-5-3-2-4-6-10/h2-6H,1H3

1817-57-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H27826)  4-Phenyl-3-butyn-2-one, 96%   

  • 1817-57-8

  • 1g

  • 527.0CNY

  • Detail
  • Alfa Aesar

  • (H27826)  4-Phenyl-3-butyn-2-one, 96%   

  • 1817-57-8

  • 5g

  • 1832.0CNY

  • Detail

1817-57-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-phenylbut-3-yn-2-one

1.2 Other means of identification

Product number -
Other names 1-acetyl-2-phenylacetylene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1817-57-8 SDS

1817-57-8Relevant articles and documents

-

Gamboni et al.

, p. 255,262 (1955)

-

Mechanistic diversity of the selective oxidations mediated by supported iron phthalocyanine complexes

Perollier, Celine,Pergrale-Mejean, Corinne,Sorokin, Alexander B.

, p. 1400 - 1403 (2005)

Selective oxidations of (i) phenols and condensed aromatics to quinones and (ii) alkynes to α,β-acetylenic ketones mediated by supported iron phthalocyanine complexes exhibit very different mechanistic features as evidenced by 18O labelling and kinetic isotope effect studies. The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2005.

Preparation of α,β-acetylenic ketones by catalytic heterogeneous oxidation of alkynes

Perollier, Celine,Sorokin, Alexander B.

, p. 1548 - 1549 (2002)

Covalent grafting of iron phthalocyanines onto silica affords active catalysts for selective oxidation of alkynes and propargylic alcohols to α,β-acetylenic ketones, highly valuable precursors in the preparation of fine chemicals.

Propargylic C[sbnd]H activation using a Cu(II) 2-quinoxalinol salen catalyst and tert-butyl hydroperoxide

Black, Clayton C.,Gorden, Anne E.V.

, p. 803 - 806 (2018)

The oxidation of alkynes to α,β-acetylenic carbonyls was achieved using only 1 mol% of a Cu(II) 2-quinoxalinol salen catalyst with tert-butyl hydroperoxide. These reactions proceed under mild conditions (70 °C) with excellent selectivity, producing yields up to 78%, and were used on a variety of alkyne substrates to produce the desired corresponding α,β-acetylenic ketones. In addition, these reactions can be run under aqueous conditions using a sulfonated version of the 2-quinoxalinol salen with good yields, reducing the need for volatile organic solvents.

Base-Promoted Synthesis of Polysubstituted 4-Aminoquinolines from Ynones and 2-Aminobenzonitriles under Transition-Metal-Free Conditions

Kumar, Ankit,Mishra, Pawan K.,Saini, Kapil Mohan,Verma, Akhilesh K.

supporting information, p. 2546 - 2551 (2021/03/16)

A transition-metal-free and base-promoted one-pot reaction of ynones with 2-aminobenzonitriles is described. The reaction was initiated through sequential aza-Michael addition/intramolecular annulation to afford various multisubstituted 4-aminoquinolines

Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring via in Situ Formed Acetals

Balamurugan, Rengarajan,Manojveer, Seetharaman,Tarigopula, Chandrahas

, p. 11871 - 11883 (2021/09/13)

Herein, we present an interesting method for the construction of a benzene ring using propargylic alcohols and 1,3-dicarbonyls, which involves three new C-C bond formations via cascade alkylation, formylation, annulation, and aromatization to make substituted biaryls. This one-pot Br?nsted acid-promoted protocol utilizes the unique reactivity of the acetal formed under the reaction conditions. Alkynyl methyl ketones could be employed instead of 1,3-dicarbonyls as they are converted to 1,3-dicarbonyls by hydration under the reaction conditions.

Oxidative Cleavage of Alkenes by O2with a Non-Heme Manganese Catalyst

Bennett, Elliot L.,Brookfield, Adam,Guan, Renpeng,Huang, Zhiliang,Mcinnes, Eric J. L.,Robertson, Craig M.,Shanmugam, Muralidharan,Xiao, Jianliang

supporting information, p. 10005 - 10013 (2021/07/19)

The oxidative cleavage of C═C double bonds with molecular oxygen to produce carbonyl compounds is an important transformation in chemical and pharmaceutical synthesis. In nature, enzymes containing the first-row transition metals, particularly heme and non-heme iron-dependent enzymes, readily activate O2 and oxidatively cleave C═C bonds with exquisite precision under ambient conditions. The reaction remains challenging for synthetic chemists, however. There are only a small number of known synthetic metal catalysts that allow for the oxidative cleavage of alkenes at an atmospheric pressure of O2, with very few known to catalyze the cleavage of nonactivated alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol for the selective oxidation of alkenes to carbonyls under 1 atm of O2. For the first time, aromatic as well as various nonactivated aliphatic alkenes could be oxidized to afford ketones and aldehydes under clean, mild conditions with a first row, biorelevant metal catalyst. Moreover, the protocol shows a very good functional group tolerance. Mechanistic investigation suggests that Mn-oxo species, including an asymmetric, mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are involved in the oxidation, and the solvent methanol participates in O2 activation that leads to the formation of the oxo species.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1817-57-8