Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22104-77-4

Post Buying Request

22104-77-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22104-77-4 Usage

General Description

(2Z)-hept-2-en-1-ol is a chemical compound with the molecular formula C7H14O. It is an unsaturated alcohol with a double bond at the 2nd carbon and a hydroxyl group at the 1st carbon. (2Z)-hept-2-en-1-ol is commonly used as a flavor and fragrance ingredient in the food and beverage industry due to its pleasant odor. It can also be utilized in the production of various organic synthesis and chemical reactions. Additionally, (2Z)-hept-2-en-1-ol has antimicrobial and insecticidal properties, making it useful in certain applications in the agricultural and pharmaceutical industries. Overall, this chemical compound has various practical uses and applications in different industries.

Check Digit Verification of cas no

The CAS Registry Mumber 22104-77-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,1,0 and 4 respectively; the second part has 2 digits, 7 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 22104-77:
(7*2)+(6*2)+(5*1)+(4*0)+(3*4)+(2*7)+(1*7)=64
64 % 10 = 4
So 22104-77-4 is a valid CAS Registry Number.

22104-77-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name hept-2-en-1-ol

1.2 Other means of identification

Product number -
Other names γ-butyl-allyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22104-77-4 SDS

22104-77-4Relevant articles and documents

The formyloxyl radical: Electrophilicity, C-H bond activation and anti-Markovnikov selectivity in the oxidation of aliphatic alkenes

Iron, Mark A.,Khenkin, Alexander M.,Neumann, Ronny,Somekh, Miriam

, p. 11584 - 11591 (2020/11/23)

In the past the formyloxyl radical, HC(O)O, had only been rarely experimentally observed, and those studies were theoretical-spectroscopic in the context of electronic structure. The absence of a convenient method for the preparation of the formyloxyl radical has precluded investigations into its reactivity towards organic substrates. Very recently, we discovered that HC(O)O is formed in the anodic electrochemical oxidation of formic acid/lithium formate. Using a [CoIIIW12O40]5- polyanion catalyst, this led to the formation of phenyl formate from benzene. Here, we present our studies into the reactivity of electrochemically in situ generated HC(O)O with organic substrates. Reactions with benzene and a selection of substituted derivatives showed that HC(O)O is mildly electrophilic according to both experimentally and computationally derived Hammett linear free energy relationships. The reactions of HC(O)O with terminal alkenes significantly favor anti-Markovnikov oxidations yielding the corresponding aldehyde as the major product as well as further oxidation products. Analysis of plausible reaction pathways using 1-hexene as a representative substrate favored the likelihood of hydrogen abstraction from the allylic C-H bond forming a hexallyl radical followed by strongly preferred further attack of a second HC(O)O radical at the C1 position. Further oxidation products are surmised to be mostly a result of two consecutive addition reactions of HC(O)O to the CC double bond. An outer-sphere electron transfer between the formyloxyl radical donor and the [CoIIIW12O40]5- polyanion acceptor forming a donor-acceptor [D+-A-] complex is proposed to induce the observed anti-Markovnikov selectivity. Finally, the overall reactivity of HC(O)O towards hydrogen abstraction was evaluated using additional substrates. Alkanes were only slightly reactive, while the reactions of alkylarenes showed that aromatic substitution on the ring competes with C-H bond activation at the benzylic position. C-H bonds with bond dissociation energies (BDE) ≤ 85 kcal mol-1 are easily attacked by HC(O)O and reactivity appears to be significant for C-H bonds with a BDE of up to 90 kcal mol-1. In summary, this research identifies the reactivity of HC(O)O towards radical electrophilic substitution of arenes, anti-Markovnikov type oxidation of terminal alkenes, and indirectly defines the activity of HC(O)O towards C-H bond activation.

EFFICIENT AND REGIOCONTROLLED NICKEL(II)-CATALYZED ALKYLATION OF 2-ALKYL-1,3-DIOXEP-4-ENES BY GRIGNARD REAGENTS: A SIMPLE ROUTE TO ALLYLIC ALCOHOLS

Malanga, Corrado,Menicagli, Rita,Lardicci, Luciano

, p. 45 - 50 (2007/10/02)

The regio- and the stereochemistries of the NidppeCl2 catalyzed alkylation of 2-alkyl-1,3-dioxep-4-enes by Grignard reagents are not affected by the nature of the C2 substituent; in any case, allylic alcohols are the main reaction products and nearly pure Z isomers are almost quantitatively obtained when either secondary or tertiary Grignard reagents are used.A rationale for the reaction is proposed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22104-77-4