Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24840-05-9

Post Buying Request

24840-05-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24840-05-9 Usage

Physical state

colorless to yellow liquid

Solubility

insoluble in water

Uses

production of industrial chemicals (pharmaceuticals, pesticides), monomer in synthetic fibers and rubbers, solvent, intermediate in organic compound synthesis

Toxicity

can cause skin and eye irritation

Check Digit Verification of cas no

The CAS Registry Mumber 24840-05-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,8,4 and 0 respectively; the second part has 2 digits, 0 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 24840-05:
(7*2)+(6*4)+(5*8)+(4*4)+(3*0)+(2*0)+(1*5)=99
99 % 10 = 9
So 24840-05-9 is a valid CAS Registry Number.

24840-05-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-phenylprop-2-enenitrile

1.2 Other means of identification

Product number -
Other names (Z)-3-phenylpropenonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24840-05-9 SDS

24840-05-9Relevant articles and documents

Selective Construction of C?C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides

Liu, Xin,Werner, Thomas

supporting information, p. 1096 - 1104 (2020/12/31)

Herein, we report the manganese catalyzed coupling of alcohols with phosphorus ylides. The selectivity in the coupling of primary alcohols with phosphorus ylides to form carbon-carbon single (C?C) and carbon-carbon double (C=C) bonds can be controlled by the ligands. In the conversion of more challenging secondary alcohols with phosphorus ylides the selectivity towards the formation of C?C vs. C=C bonds can be controlled by the reaction conditions, namely the amount of base. The scope and limitations of the coupling reactions were thoroughly evaluated by the conversion of 21 alcohols and 15 ylides. Notably, compared to existing methods, which are based on precious metal complexes as catalysts, the present catalytic system is based on earth abundant manganese catalysts. The reaction can also be performed in a sequential one-pot reaction generating the phosphorus ylide in situ followed manganese catalyzed C?C and C=C bond formation. Mechanistic studies suggest that the C?C bond was generated via a borrowing hydrogen pathway and the C=C bond formation followed an acceptorless dehydrogenative coupling pathway. (Figure presented.).

1,3-Diphenyldisiloxane Enables Additive-Free Redox Recycling Reactions and Catalysis with Triphenylphosphine

Buonomo, Joseph A.,Cole, Malcolm S.,Eiden, Carter G.,Aldrich, Courtney C.

, p. 3583 - 3594 (2020/09/15)

The recently reported chemoselective reduction of phosphine oxides with 1,3-diphenyldisiloxane (DPDS) has opened up the possibility of additive-free phosphine oxide reductions in catalytic systems. Herein we disclose the use of this new reducing agent as an enabler of phosphorus redox recycling in Wittig, Staudinger, and alcohol substitution reactions. DPDS was successfully utilized in ambient-temperature additive-free redox recycling variants of the Wittig olefination, Appel halogenation, and Staudinger reduction. Triphenylphosphine-promoted catalytic recycling reactions were also facilitated by DPDS. Additive-free triphenylphosphine-promoted catalytic Staudinger reductions could even be performed at ambient temperature due to the rapid nature of phosphinimine reduction, for which we characterized kinetic and thermodynamic parameters. These results demonstrate the utility of DPDS as an excellent reducing agent for the development of phosphorus redox recycling reactions.

An aerobic and green C-H cyanation of terminal alkynes

Si, Yi-Xin,Zhang, Song-Lin,Zhu, Peng-Fei

supporting information, p. 9216 - 9220 (2020/12/03)

This study describes a benign C-H cyanation of terminal alkynes with α-cyanoesters serving as a nontoxic cyanide source. In situ generation of the key copper cyanide intermediate is proposed by a sequence of α-C-H oxidation and copper-mediated β-carbon elimination of α-cyanoesters, releasing the α-ketoester byproduct observed experimentally. The ensuing reaction of copper cyanide with terminal alkynes delivers preferentially cyanoalkynes and surpasses the possible Glaser type dimerization of terminal alkynes or the undesired accumulation of HCN under protic conditions. The presence of the co-oxidant K2S2O8 is crucial to this selectivity, probably by promoting oxidative transmetalation and the resulting formation of the Cu(iii)(acetylide)(CN) intermediate. All the reagents and salts used are commercially available, cheap and nontoxic, avoiding the use of highly toxic cyanide salts typically required in cyanation studies. The scope of this reaction is demonstrated with a set of alkynes and α-cyanoesters. The application of this method to late-stage functionalization of the terminal alkyne group in an estrone derivative is also feasible, showing its practical value for drug design.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24840-05-9