Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27262-45-9

Post Buying Request

27262-45-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27262-45-9 Usage

Uses

(R)-(+)-Bupivacaine is a local anaesthetic used for epidural and intrathecal anaesthesia.

Definition

ChEBI: The (R)-(+)-enantiomer of bupivacaine.

Check Digit Verification of cas no

The CAS Registry Mumber 27262-45-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,2,6 and 2 respectively; the second part has 2 digits, 4 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 27262-45:
(7*2)+(6*7)+(5*2)+(4*6)+(3*2)+(2*4)+(1*5)=109
109 % 10 = 9
So 27262-45-9 is a valid CAS Registry Number.
InChI:InChI=1/C18H28N2O/c1-4-5-12-20-13-7-6-11-16(20)18(21)19-17-14(2)9-8-10-15(17)3/h8-10,16H,4-7,11-13H2,1-3H3,(H,19,21)/t16-/m1/s1

27262-45-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name dextrobupivacaine

1.2 Other means of identification

Product number -
Other names (R)-(+)-BUPIVACAINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27262-45-9 SDS

27262-45-9Relevant articles and documents

Enantioseparation of racemic bupivacaine via ultrasonic-assisted diastereomeric crystallization using 12,14-dinitrodehydroabietic acid

Ge, Li,Zhu, Yi,Qi, Yonghui,Chen, Yande,Yang, Kedi

, p. 256 - 261 (2019)

12,14-Dinitrodehydroabietic acid (12,14-dinitroDHAA), a chiral acid obtained by the nitration of optical dehydroabietic acid (DHAA), was successfully employed as resolving agent. The resolution of racemic bupivacaine by ultrasonic-assisted diastereomeric crystallization in ethanol was investigated. The results indicated that ultrasonic-assist can well facilitate resolution of (R,S)-bupivacaine and a higher enantiomeric excess (ee) and yield was obtained for (S)-bupivacaine, and while without ultrasound, the ee value decreases by increasing the crystallization time. A Box-Behnken experimental design with four factors (amount of 12,14-dinitroDHAA, ethanol amount, ultrasonic power and crystallization temperature) combined with response surface methodology (RSM) was applied to explore resolution effects. A second-order polynomial equation was adequate to model the relationship between the ee (or yield) and the dependent variables. When maintaining a lower limit of 90% for the yield of (S)-bupivacaine, the optimal resolution conditions by RSM were 12,14-dinitroDHAA/bupivacaine molar ratio of 1.6, solvent/propranolol ratio of 16.5 mL/g, 63.2 W ultrasonic power and crystallization temperature of 0 °C, respectively. Under the optimal conditions, the experimental ee and yield of (S)-bupivacaine were 69.8% and 87.5%.

Preparation method of levobupivacaine hydrochloride

-

, (2017/07/19)

The invention belongs to the technical field of chemical synthesis and in particular relates to a preparation method of levobupivacaine hydrochloride. The preparation method takes racemic or S-configuration 2-piperidinecarboxylic acid as a starting raw material and comprises the following steps: taking the starting raw material and n-butylaldehyde to react and carrying out borohydride reduction reaction to obtain 1-butylpiperidine-2-carboxylic acid; taking the 1-butylpiperidine-2-carboxylic acid and 2,6-dimethylaniline to be subjected to condensation reaction, so as to generate bupivacaine or levobupivacaine; carrying out subsequent treatment to obtain a final product levobupivacaine hydrochloride. Compared with an existing synthesis route, the preparation method has the advantages of short synthesis route, simple method, convenience for operation, low cost and easiness for industrial production; reaction conditions of each step are relatively moderate, a process is stable, a strong-corrosion chlorination reagent is not used, the pollution to environment is reduced and the like.

Synthesis of Mepivacaine and Its Analogues by a Continuous-Flow Tandem Hydrogenation/Reductive Amination Strategy

Suveges, Nícolas S.,de Souza, Rodrigo O. M. A.,Gutmann, Bernhard,Kappe, C. Oliver

, p. 6511 - 6517 (2017/12/02)

Herein we report a convenient, fast, and high-yielding method for the generation of the racemic amide anaesthetics mepivacaine, ropivacaine, and bupivacaine. Coupling of α-picolinic acid and 2,6-xylidine under sealed-vessel microwave conditions generates the intermediate amide after a reaction time of only 5 min at 150 °C. Subsequent reaction in a continuous-flow high-pressure hydrogenator (H-Cube ProTM) in the presence of the respective aldehyde directly converts the intermediate to the final amide anaesthetics in a continuous, integrated, multi-step ring-hydrogenation/reductive amination protocol. Merits and limitations of the protocol are discussed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27262-45-9