Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2858-55-1

Post Buying Request

2858-55-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2858-55-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2858-55-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,8,5 and 8 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 2858-55:
(6*2)+(5*8)+(4*5)+(3*8)+(2*5)+(1*5)=111
111 % 10 = 1
So 2858-55-1 is a valid CAS Registry Number.

2858-55-1Downstream Products

2858-55-1Relevant articles and documents

Selective synthesis of epichlorohydrin: Via liquid-phase allyl chloride epoxidation over a modified Ti-MWW zeolite in a continuous slurry bed reactor

Ding, Luoyi,Yin, Jinpeng,Tong, Wen,Peng, Rusi,Jiang, Jingang,Xu, Hao,Wu, Peng

, p. 331 - 342 (2021/01/11)

The epoxidation of allyl chloride (ALC) to epichlorohydrin (ECH) with H2O2 using a piperidine (PI)-modified Ti-MWW catalyst (Ti-MWW-PI) in a continuous slurry reactor was investigated to develop an efficient reaction system for the corresponding industrial process. The reaction parameters, including solvent, reaction temperature, t-butanol/ALC mass ratio, ALC/H2O2 molar ratio, weight hourly space velocity of H2O2, and the addition amount of ammonia, were studied in detail to pursue high H2O2 conversion and ECH selectivity. A long catalytic lifetime of 244 h was achieved at high H2O2 conversion (>97.0%) and ECH selectivity (>99.8%) under optimized reaction conditions. The crystallinity was well maintained for the deactivated Ti-MWW-PI catalyst, which was regenerated by a combination of calcination and piperidine treatment. This journal is

Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism

Deshpande, Nitish,Parulkar, Aamena,Joshi, Rutuja,Diep, Brian,Kulkarni, Ambarish,Brunelli, Nicholas A.

, p. 46 - 54 (2019/01/04)

Lewis acidic catalytic materials are investigated for the regioselective ring opening of epoxides with alcohols. For ring opening epichlorohydrin with methanol, the catalytic activity shows a strong dependence on the type of support and Lewis acidic species used. While Sn-SBA-15 is catalytically active, significantly higher catalytic activity can be achieved with hydrothermally synthesized zeolites of which Sn-Beta is 6 and 7 times more active than Zr-Beta or Hf-Beta, respectively. Sn-Beta is determined to be more active and more regioselective for epoxide ring opening of epichlorohydrin with methanol than Al-Beta. For Sn-Beta, the activation energy for the reaction between epichlorohydrin and methanol is determined to be 53 ± 7 kJ mol?1. For epichlorohydrin, the activation energy barrier and experimentally observed regioselectivity are found using DFT to be consistent with a concerted reaction mechanism involving activation of the epoxide on an alcohol adsorbed on the catalytic site and nucleophilic attack by a second alcohol. The epoxide is shown to impact the regioselectivity and the mechanism since isobutylene oxide is selectively ring opened by methanol to form the terminal alcohol. DFT calculations indicate the mechanism for isobutylene ring opening involves epoxide activation and ring opening on an alcohol adsorbed onto the catalytic site. Finally, catalyst reuse testing indicates that Sn-Beta can be used for multiple reactions with no decrease in activity and limited to no leaching of the tin site, demonstrating Sn-Beta is a promising catalytic material for epoxide ring opening reactions with alcohols.

Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2)

Krap, Cristina P.,Newby, Ruth,Dhakshinamoorthy, Amarajothi,García, Hermenegildo,Cebula, Izabela,Easun, Timothy L.,Savage, Mathew,Eyley, Jennifer E.,Gao, Shan,Blake, Alexander J.,Lewis, William,Beton, Peter H.,Warren, Mark R.,Allan, David R.,Frogley, Mark D.,Tang, Chiu C.,Cinque, Gianfelice,Yang, Sihai,Schr?der, Martin

, p. 1076 - 1088 (2016/02/09)

Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3′,5,5′-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) ? and c = 11.9111(11) ? and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3′,5,5′-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) ?, b = 19.451(8) ?, and c = 11.773(5) ? and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g-1 at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga1.87Fe0.13)-solv, MFM-300(Ga1.87Fe0.13), and MFM-300(Ga1.87Fe0.13)·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga1.87Fe0.13) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2858-55-1