Welcome to LookChem.com Sign In|Join Free

CAS

  • or

32865-61-5

Post Buying Request

32865-61-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

32865-61-5 Usage

General Description

1-Acetoxy-2-iodobenzene is a chemical compound with the formula C8H7IO2. It is a white crystalline solid that is commonly used as an intermediate in the synthesis of pharmaceuticals and other organic compounds. 1-Acetoxy-2-iodobenzene is a versatile building block in organic chemistry, and it can undergo various chemical reactions to produce a wide range of products. It is also used as a reagent in the preparation of aryl iodides and other organic compounds. The compound is known for its mild and efficient reactions and is widely used in organic synthesis for the preparation of various pharmaceutical and agrochemical products.

Check Digit Verification of cas no

The CAS Registry Mumber 32865-61-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,2,8,6 and 5 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 32865-61:
(7*3)+(6*2)+(5*8)+(4*6)+(3*5)+(2*6)+(1*1)=125
125 % 10 = 5
So 32865-61-5 is a valid CAS Registry Number.
InChI:InChI=1/C8H7IO2/c1-6(10)11-8-5-3-2-4-7(8)9/h2-5H,1H3

32865-61-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Iodophenyl acetate

1.2 Other means of identification

Product number -
Other names (2-iodophenyl) acetate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:32865-61-5 SDS

32865-61-5Relevant articles and documents

Steric effect of NHC ligands in Pd(II)–NHC-catalyzed non-directed C–H acetoxylation of simple arenes

Mandal, Tanmoy,Yadav, Sudha,Choudhury, Joyanta

, (2021/09/06)

Although there has been a lot of progress in oxidative arene C–H functionalization reactions catalyzed by Pd(II/IV) system, the non-directed, site-selective functionalization of arene molecules is still challenging. It has been established that ligands play a pivotal role in controlling rate- as well as selectivity-determining step in a catalytic cycle involving well-defined metal-ligand bonding. N-heterocyclic carbene (NHC) ligands have had a tremendous contribution in the recent extraordinary success of achieving high reactivity and excellent selectivity in many catalytic processes including cross-coupling and olefin-metathesis reactions. However, the immense potential of these NHC ligands in improving site-selectivity of non-directed catalytic C–H functionalization reactions of simple arenes is yet to be realized, where overriding the electronic bias on deciding selectivity is a burdensome task. The presented work demonstrated an initiative step in this regard. Herein, a series of well-defined discrete [Pd(NHCR′R)(py)I2] complexes with systematically varied degree of spatial congestion at the Pd centre, exerted through the R and R’ substituents on the NHC ligand, were explored in controlling the activity as well as the site-selectivity of non-directed acetoxylation of representative monosubstituted and disubstituted simple arenes (such as toluene, iodobenzene and bromobenzene, naphthalene and 1,2-dichlorobenzene). The resulting best yields were found to be 75% for toluene and 65% for bromobenzene with [Pd(NHCMePh)(py)I2], 75% for iodobenzene and 79% for naphthalene with [Pd(NHCMeMe)(py)I2], and 41% for 1,2-dichlorobenzene with [Pd(NHCCyCy)(py)I2]. Most importantly, with increasing the bulkiness of the NHC ligand in the complexes, the selectivity of the distal C-acetoxylated products in comparison to the proximal ones, was enhanced to a great extent in all cases. Considering the vast library of NHC ligands, this study underscores the future opportunity to develop more strategies to improve the activity and the crucial site-selectivity of C–H functionalization reactions in simple as well as complex organic molecules.

Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides

Lee, Yong Ho,Morandi, Bill

, p. 1016 - 1022 (2018/09/06)

Current methods for functional group interconversion have, for the most part, relied on relatively strong driving forces which often require highly reactive reagents to generate irreversibly a desired product in high yield and selectivity. These approaches generally prevent the use of the same catalytic strategy to perform the reverse reaction. Here we describe a catalytic functional group metathesis approach to interconvert, under CO-free conditions, two synthetically important classes of electrophiles that are often employed in the preparation of pharmaceuticals and agrochemicals—aroyl chlorides (ArCOCl) and aryl iodides (ArI). Our reaction design relies on the implementation of a key reversible ligand C–P bond cleavage event, which enables a non-innocent, metathesis-active phosphine ligand to mediate a rapid aryl group transfer between the two different electrophiles. Beyond enabling a practical and safer approach to the interconversion of ArCOCl and ArI, this type of ligand non-innocence provides a blueprint for the development of a broad range of functional group metathesis reactions employing synthetically relevant aryl electrophiles.

Alkoxyboration: Ring-closing addition of B-O σ bonds across alkynes

Hirner, Joshua J.,Faizi, Darius J.,Blum, Suzanne A.

supporting information, p. 4740 - 4745 (2014/04/17)

For nearly 70 years, the addition of boron-X σ bonds to carbon-carbon multiple bonds has been employed in the preparation of organoboron reagents. However, the significantly higher strength of boron-oxygen bonds has thus far precluded their activation for addition, preventing a direct route to access a potentially valuable class of oxygen-containing organoboron reagents for divergent synthesis. We herein report the realization of an alkoxyboration reaction, the addition of boron-oxygen σ bonds to alkynes. Functionalized O-heterocyclic boronic acid derivatives are produced using this transformation, which is mild and exhibits broad functional group compatibility. Our results demonstrate activation of this boron-O σ bond using a gold catalysis strategy that is fundamentally different from that used previously for other boron addition reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 32865-61-5