Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3377-89-7

Post Buying Request

3377-89-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3377-89-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 3377-89-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,3,7 and 7 respectively; the second part has 2 digits, 8 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 3377-89:
(6*3)+(5*3)+(4*7)+(3*7)+(2*8)+(1*9)=107
107 % 10 = 7
So 3377-89-7 is a valid CAS Registry Number.

3377-89-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name tert-butyl 2-phenylethaneperoxoate

1.2 Other means of identification

Product number -
Other names tert-butyl phenylperacetate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3377-89-7 SDS

3377-89-7Relevant articles and documents

New synthesis of tert-butyl peroxycarboxylates

Donchak,Voronov,Yur'ev

, p. 487 - 490 (2007/10/03)

tert-Butyl peroxyacetate, tert-butyl peroxybutyrate, tert-butyl phenylperoxyacetate, and tert-butyl peroxyundecanoate were obtained in nearly quantitative yields by the esterification of the corresponding carboxylic acids with tert-butyl hydroperoxide in the presence of trifluoroacetic anhydride and pyridine in nonaqueous medium at 0-5°C. No tert-butyl peroxytrifluoroacetate was formed as a by-product during the process. A possible reaction mechanism is discussed. Pleiades Publishing, Inc., 2006.

Reactions of Ketones with the Oxidizing System Aluminum Tri-tert-butylate-tert-Butyl Hydroperoxide

Stepovik,Zaburdaeva,Dodonov

, p. 264 - 269 (2007/10/03)

Oxidation of ketones containing primary, secondary, and tertiary carbon atoms at the α-position [dialkyl ketones, alkyl aryl ketones, and alkyl (aryl) benzyl ketones] with the system aluminum tri-tert-butylale-tert-butyl hydroperoxide is accompanied by cleavage of the carbon skeleton of the substrate via formation of α-hydroxy carbonyl and α-dicarbonyl compounds. The qualitative and quantitative composition of the reaction products indicates that the oxidation involves free radicals. Simultaneously, the oxidizing system adds across the carbonyl group of the substrate, which is followed by decomposition of aluminum-containing peroxides.

Extent of Charge Transfer in the Photoreduction of Phenyl Ketones by Alkylbenzenes

Wagner, Peter J.,Truman, Royal J.,Puchalski, Alan E.,Wake, Ronald

, p. 7727 - 7738 (2007/10/02)

Rate constants for triplet-state reaction of various ring-substituted benzophenones (BPs), acetophenones (APs), and α,α,α-trifluoroacetophenones (TFAs) with toluene and p-xylene have been determined by a combination of flash kinetics, steady-state quenching, and quantum yield measurements.The relative amounts of primary and tertiary radicals formed by reaction of the same ketons with p-cymene have also been measured.For all three types of ketones, rate constants correlate well with triplet ketone reduction potentials.The magnitude of the kinetic isotope effects observed with toluene-d8 and p-xylene-d10 diminishes as the ketones become easier to reduce.All of the ketone triplets react with alkylbenzenes primarily by a charge-transfer mechanism, with the rate-determining step changing from complexation to hydrogen transfer as the ketones become harder to reduce.The least reactive AP triplets probably react significantly via simple hydrogen atom abstraction as well.Those ketones with n,?* lowest triplets (all BPs and some APs) react with p-cymene to give primary/tertiary radical ratios that vary no more than a factor of 2 from the 0.40 value displayed by tert-butoxy radicals; those with ?,?* lowest triplets (TFAs and some APs) give ratios that favor primary radicals and that vary by an order of magnitude with the triplet ketone reduction potential.The variation in cymene product ratios reflect different orientations for attack on cymene by n,?* and ?,?* triplets and differing degrees of partial electron transfer within the exciplexes, which are not tight radical ion pairs.The variation seen for ?,?* triplets represents a stereoelectronic effect within face-to-face exciples, as evidenced by the excerptional behavior of p-diacylbenzenes, which give the highest ratio of tertiary radicals from cymene.There is no set intrinsic ratio of reactivity for ?,?* triplets vs. n,?* triplets in these CT reactions.The two types of triplets show similar reactivity for the more easily reduced triplets, with the harder to reduce ?,?* triplets being only one-tenth as reactive as n,?* triplets of comparable triplet reduction potential.When the extent of electron transfer in the exciplex is small, hydogen transfer is rate determining and ?,?* reactivity drops.A study of two radical reactions which generate benzyl and α-hydroxy-α-methylbenzyl radicals indicates that radical disproportionation cannot explain the low quantum yields (0.10) of most ketone-toluene photoreductions, which apparently involve substantial radiation less decay by the exciplex intermediates.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3377-89-7