Welcome to LookChem.com Sign In|Join Free

CAS

  • or

365564-10-9

Post Buying Request

365564-10-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

365564-10-9 Usage

General Description

3,4-Dimethoxyphenylboronic acid, pinacol ester is a chemical compound used in organic synthesis as a building block for various pharmaceuticals and agrochemicals. It is a boronic acid containing two methoxy groups and a pinacol ester functional group. The compound is commonly used in cross-coupling reactions to form carbon-carbon bonds, particularly with aryl halides and pseudohalides. It is also used as a reagent in the Suzuki-Miyaura reaction, a powerful tool in organic synthesis for the formation of biaryl compounds. 3,4-DIMETHOXYPHENYLBORONIC ACID, PINACOL ESTER is an important tool in the development of new drugs and materials due to its versatility in forming complex organic molecules.

Check Digit Verification of cas no

The CAS Registry Mumber 365564-10-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 3,6,5,5,6 and 4 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 365564-10:
(8*3)+(7*6)+(6*5)+(5*5)+(4*6)+(3*4)+(2*1)+(1*0)=159
159 % 10 = 9
So 365564-10-9 is a valid CAS Registry Number.
InChI:InChI=1/C14H21BO4/c1-13(2)14(3,4)19-15(18-13)10-7-8-11(16-5)12(9-10)17-6/h7-9H,1-6H3

365564-10-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(3,4-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

1.2 Other means of identification

Product number -
Other names 3,4-Dimethoxyphenylboronic acid, pinacol ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:365564-10-9 SDS

365564-10-9Relevant articles and documents

Sequential Ir/Cu-Mediated Method for the Meta-Selective C-H Radiofluorination of (Hetero)Arenes

Wright, Jay S.,Sharninghausen, Liam S.,Preshlock, Sean,Brooks, Allen F.,Sanford, Melanie S.,Scott, Peter J. H.

supporting information, p. 6915 - 6921 (2021/05/29)

This article describes a sequential Ir/Cu-mediated process for the meta-selective C-H radiofluorination of (hetero)arene substrates. In the first step, Ir-catalyzed C(sp2)-H borylation affords (hetero)aryl pinacolboronate (BPin) esters. The intermediate organoboronates are then directly subjected to copper-mediated radiofluorination with [18F]tetrabutylammonium fluoride to afford fluorine-18 labeled (hetero)arenes in high radiochemical yield and radiochemical purity. This entire process is performed on a benchtop without Schlenk or glovebox techniques and circumvents the need to isolate (hetero)aryl boronate esters. The reaction was automated on a TracerLab FXFN module with 1,3-dimethoxybenzene and a meta-tyrosine derivative. The products, [18F]1-fluoro-3,5-dimethoxybenzene and an 18F-labeled meta-tyrosine derivative, were obtained in 37 ± 5% isolated radiochemical yield and >99% radiochemical purity and 25% isolated radiochemical yield and 99% radiochemical purity, and 0.52 Ci/μmol (19.24 GBq/μmol) molar activity (Am), respectively.

Metal-organic frameworks containing nitrogen-donor ligands for efficient catalytic organic transformations

-

Page/Page column 28; 31-33; 86-88, (2020/06/03)

Metal-organic framework (MOFs) compositions based on nitrogen donor-based organic bridging ligands, including ligands based on 1,3-diketimine (NacNac), bipyridines and salicylaldimine, were synthesized and then post-synthetically metalated with metal precursors, such as complexes of first row transition metals. Metal complexes of the organic bridging ligands could also be directly incorporated into the MOFs. The MOFs provide a versatile family of recyclable and reusable single-site solid catalysts for catalyzing a variety of asymmetric organic transformations. The solid catalysts can also be integrated into a flow reactor or a supercritical fluid reactor.

Visible Light-Induced Borylation of C-O, C-N, and C-X Bonds

Arman, Hadi D.,Dang, Hang. T.,Haug, Graham C.,He, Ru,Jin, Shengfei,Larionov, Oleg V.,Nguyen, Viet D.,Nguyen, Vu T.,Schanze, Kirk S.

supporting information, (2020/02/04)

Boronic acids are centrally important functional motifs and synthetic precursors. Visible light-induced borylation may provide access to structurally diverse boronates, but a broadly efficient photocatalytic borylation method that can effect borylation of a wide range of substrates, including strong C-O bonds, remains elusive. Herein, we report a general, metal-free visible light-induced photocatalytic borylation platform that enables borylation of electron-rich derivatives of phenols and anilines, chloroarenes, as well as other haloarenes. The reaction exhibits excellent functional group tolerance, as demonstrated by the borylation of a range of structurally complex substrates. Remarkably, the reaction is catalyzed by phenothiazine, a simple organic photocatalyst with MW 200 that mediates the previously unachievable visible light-induced single electron reduction of phenol derivatives with reduction potentials as negative as approximately - 3 V versus SCE by a proton-coupled electron transfer mechanism. Mechanistic studies point to the crucial role of the photocatalyst-base interaction.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 365564-10-9