Relevant articles and documents
All total 27 Articles be found
A new method of introducing a trifluoromethyl group into an aromatic ring
Zupan, Marko,Bregar, Zvonko
, p. 3357 - 3358 (1990)
Trifluoromethyl derivatives of aromatic molecules were prepared from aromatic halides, converted to dithiocarboxylic acids through formation of Grignard reagents, followed by fluorination with xenon difluoride at room temperature.
Cross-Coupling through Ag(I)/Ag(III) Redox Manifold
Demonti, Luca,Mézailles, Nicolas,Nebra, Noel,Saffon-Merceron, Nathalie
supporting information, p. 15396 - 15405 (2021/10/12)
In ample variety of transformations, the presence of silver as an additive or co-catalyst is believed to be innocuous for the efficiency of the operating metal catalyst. Even though Ag additives are required often as coupling partners, oxidants or halide scavengers, its role as a catalytically competent species is widely neglected in cross-coupling reactions. Most likely, this is due to the erroneously assumed incapacity of Ag to undergo 2e? redox steps. Definite proof is herein provided for the required elementary steps to accomplish the oxidative trifluoromethylation of arenes through AgI/AgIII redox catalysis (i. e. CEL coupling), namely: i) easy AgI/AgIII 2e? oxidation mediated by air; ii) bpy/phen ligation to AgIII; iii) boron-to-AgIII aryl transfer; and iv) ulterior reductive elimination of benzotrifluorides from an [aryl-AgIII-CF3] fragment. More precisely, an ultimate entry and full characterization of organosilver(III) compounds [K]+[AgIII(CF3)4]? (K-1), [(bpy)AgIII(CF3)3] (2) and [(phen)AgIII(CF3)3] (3), is described. The utility of 3 in cross-coupling has been showcased unambiguously, and a large variety of arylboron compounds was trifluoromethylated via [AgIII(aryl)(CF3)3]? intermediates. This work breaks with old stereotypes and misconceptions regarding the inability of Ag to undergo cross-coupling by itself.
An Efficient Deprotection of 2,6-Bis(trifluoromethyl)phenylboronic Esters via Catalytic Protodeboronation Using Tetrabutyl ammonium Fluoride
Makino, Kazuishi,Nojima, Shinya,Shimada, Naoyuki,Urata, Sari
supporting information, p. 2300 - 2304 (2019/12/11)
We herein describe an efficient deprotection of 2,6-bis(trifluoromethyl)phenylboronic esters, which serve as effective protective groups for 1,2- or 1,3-diols in various organic transformations, via protodeboronation by using a catalytic amount of tetrabutylammonium fluoride (TBAF).
Palladium-mediated radical homocoupling reactions: A surface catalytic insight
Favier, Isabelle,Toro, Marie-Lou,Lecante, Pierre,Pla, Daniel,Gómez, Montserrat
, p. 4766 - 4773 (2018/09/29)
In this contribution, we report a palladium nanoparticle-promoted reductive homocoupling of haloarenes that proceeds efficiently to produce corresponding bis-aryls in moderate to excellent yields using relatively low catalyst loading (1 mol%), and exhibits broad functional group tolerance. This work sheds light on how the surface state of Pd(0) nanoparticles plays a crucial role in the reactivity of catalytic systems. Notably, the appropriate choice of palladium salts for the preparation of the preformed nanocatalysts was a key parameter having a major impact on the catalytic activity; thus, the effect of halide anions on the reactivity of the as-prepared palladium nanoparticles could be assessed, with iodide anions being capable of inhibiting the corresponding homocoupling reaction. The homocoupling reaction mechanism has been further studied by means of radical trap and electron paramagnetic resonance (EPR) experiments, revealing that the reaction proceeds via radical intermediates. Taking into account these data, a plausible reaction mechanism based on single-electron transfer processes on the palladium nanoparticle surface is discussed.