Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4136-86-1

Post Buying Request

4136-86-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4136-86-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4136-86-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,1,3 and 6 respectively; the second part has 2 digits, 8 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 4136-86:
(6*4)+(5*1)+(4*3)+(3*6)+(2*8)+(1*6)=81
81 % 10 = 1
So 4136-86-1 is a valid CAS Registry Number.

4136-86-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Butyl-bernsteinsaeure-dimethylester

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4136-86-1 SDS

4136-86-1Downstream Products

4136-86-1Relevant articles and documents

Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2′-(Pyridine-2,6-diyl)diphenol-Based Borates

Miyamoto, Yusuke,Sumida, Yuto,Ohmiya, Hirohisa

supporting information, p. 5865 - 5870 (2021/07/31)

A new type of alkylborate was developed for the purpose of generating radicals via direct photoexcitation. These borates were prepared using 2,2′-(pyridine-2,6-diyl)diphenol as a tridentate ligand together with organoboronic acids or potassium trifluoroborates. The ready availability of organoboron compounds is a significant advantage of this direct photoexcitation protocol. The excited states of these borates can also serve as strong reductants, enabling various transformations.

Synergetic Catalysis for One-pot Bis-alkoxycarbonylation of Terminal Alkynes over Pd/Xantphos?Al(OTf)3 Bi-functional Catalytic System

Guo, Wen-Di,Liu, Lei,Yang, Shu-Qing,Chen, Xiao-Chao,Lu, Yong,VO-Thanh, Giang,Liu, Ye

, p. 1376 - 1384 (2020/01/24)

Tandem bis-alkoxycarbonylation of alkynes allows for the preparation of 2-substituted succinates from alkynes and nucleophile alcohol via two successive alkoxycarbonylation with advantages of 100 % atomic economy and simplified one-pot operation. Herein, the one-pot tandem bis-alkoxycarbonylation of alkynes was accomplished over the bi-functional catalytic system containing Xantphos-modified Pd-complex and Lewis super-acid of Al(OTf)3. It was found that, via the synergetic catalysis, the involved Xantphos-modified Pd-complex was responsible for the activation of CO and the alkynes through coordination to Pd-center while Al(OTf)3 was in charge of the activation of the alcohol to facilitate the formation of [Pd?H]+ active species. The in situ high-pressure FT-IR analysis, coupled with 1H/13C NMR spectral characterizations, confirmed that the introduced Al(OTf)3 with intensive oxophilicity (via acid-base pair interaction) was able to activate nucleophilic MeOH to be a reliable proton-donor (i. e. hydride-source) to warrant the formation and stability of [Pd?H]+ species upon the oxidation of Pd0 by H+ (Pd0+H+→[PdII?H]+). Over the developed bi-functional catalytic system, the yields of the target diesters were obtained in the range of 36~86 % in this sequence with the wide substrate scope.

Electron-Transfer-Photosensitized Conjugate Alkylation

Fagnoni, Maurizio,Mella, Mariella,Albini, Angelo

, p. 4026 - 4033 (2007/10/03)

Photoinduced electron transfer (PET) from an aliphatic donor to a sensitizer and fragmentation of the radical cation leads to alkyl radicals. Radical alkylation of electron-withdrawing substituted alkenes and alkynes has been obtained in this way, and its scope has been explored. Effective sensitizers are tetramethyl pyromellitate (TMPM), 1,4-dicyanonaphthalene (in combination with biphenyl, DCN/BP), and 1,2,4,5-tetracyanobenzene. Radical precursors are tetraalkylstannanes, 2,2-dialkyldioxolanes, and, less efficiently, carboxylic acids. Steady-state and flash photolysis experiments show that escape out of cage of radical ions is the main factor determining the yield of radical formation. This is efficient with triplet sensitizers such as TMPM, while with singlet sensitizers, the use of a "cosensitizer" is required, as in the DCN/BP system. Radical cations containing primary alkyl radicals escape and fragment more efficiently than those containing tertiary radicals. The thus-formed radicals are trapped by electron-withdrawing substituted alkenes, and the relative efficiency is determined by the rate of radical addition, in accord with the proposed mechanism. Among the alkynes tested, only dimethyl acetylenedicarboxylate reacts, and the order of radical reactivity is different. It is suggested that a different mechanism operates in this case and involves assistance by the alkyne to the radical cation fragmentation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4136-86-1