473732-59-1Relevant articles and documents
Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases
Martínez-Montero, Lía,Gotor, Vicente,Gotor-Fernández, Vicente,Lavandera, Iván
, p. 474 - 480 (2017/06/23)
A one-pot/two-step bienzymatic asymmetric amination of secondary alcohols is disclosed. The approach is based on a sequential strategy involving the use of a laccase/TEMPO catalytic system for the oxidation of alcohols into ketone intermediates, and their following transformation into optically enriched amines by using transaminases. Individual optimizations of the oxidation and biotransamination reactions have been carried out, studying later their applicability in a concurrent process. Therefore, 17 racemic (hetero) aromatic sec-alcohols with different substitutions in the aromatic ring have been converted into enantioenriched amines with good to excellent selectivities (90-99% ee) and conversion values (67-99%). The scalability of the process was also demonstrated when two different amine donors were used in the transamination step, such as isopropylamine and cis-2-buten-1,4-diamine. Satisfyingly, both sacrificial amine donors can shift the equilibrium toward the amine formation, leading to the corresponding isolated enantioenriched amines with good to excellent results.
MOF-derived cobalt nanoparticles catalyze a general synthesis of amines
Jagadeesh, Rajenahally V.,Murugesan, Kathiravan,Alshammari, Ahmad S.,Neumann, Helfried,Pohl, Marga-Martina,Radnik, J?rg,Beller, Matthias
, p. 326 - 332 (2017/09/28)
The development of base metal catalysts for the synthesis of pharmaceutically relevant compounds remains an important goal of chemical research. Here, we report that cobalt nanoparticles encapsulated by a graphitic shell are broadly effective reductive amination catalysts. Their convenient and practical preparation entailed template assembly of cobaltdiamine- dicarboxylic acid metal organic frameworks on carbon and subsequent pyrolysis under inert atmosphere.The resulting stable and reusable catalysts were active for synthesis of primary, secondary, tertiary, and N-methylamines (more than 140 examples).The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, or nitro compounds, and molecular hydrogen under industrially viable and scalable conditions, offering cost-effective access to numerous amines, amino acid derivatives, and more complex drug targets.
THIADIAZOLEDIOXIDES AND THIADIAZOLEOXIDES AS CXC- AND CC-CHEMOKINE RECEPTOR LIGANDS
-
Page 251, (2008/06/13)
Disclosed are novel compounds of the formula (IA) and the pharmaceutically acceptable salts and solvates thereof. Examples of groups comprising Substituent A include heteroaryl, aryl, heterocycloalkyl, cycloalkyl, aryl, alkynyl, alkenyl, aminoalkyl, alkyl or amino. Examples of groups comprising Substituent B include aryl and heteroaryl. Also disclosed is a method of treating a chemokine mediated diseases, such as, cancer, angiogenisis, angiogenic ocular diseases, pulmonary diseases, multiple sclerosis, rheumatoid arthritis, osteoarthritis, stroke and cardiac reperfusion injury, acute pain, acute and chronic inflammatory pain, and neuropathic pain using a compound of formula (IA).
3,4-Di-substituted cyclobutene-1,2-diones as CXC-chemokine receptor ligands
-
Page 127; 129, (2008/06/13)
There are disclosed compounds of the formula or a pharmaceutically acceptable salt or solvate thereof which are useful for the treatment of chemokine-mediated diseases such as acute and chronic inflammatory disorders and cancer.
3,4-Di-substituted cyclobutene-1,2-diones as CXC-chemokine receptor ligands
-
Page 130, (2008/06/13)
There are disclosed compounds of the formula or a pharmaceutically acceptable salt or solvate thereof which are useful for the treatment of chemokine-mediated diseases such as acute and chronic inflammatory disorders and cancer.