Welcome to LookChem.com Sign In|Join Free

CAS

  • or

498-66-8

Post Buying Request

498-66-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

498-66-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 498-66-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,9 and 8 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 498-66:
(5*4)+(4*9)+(3*8)+(2*6)+(1*6)=98
98 % 10 = 8
So 498-66-8 is a valid CAS Registry Number.
InChI:InChI=1/C7H10/c1-2-7-4-3-6(1)5-7/h1-2,6-7H,3-5H2/t6-,7+

498-66-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (N0166)  2-Norbornene  >99.0%(GC)

  • 498-66-8

  • 25g

  • 100.00CNY

  • Detail
  • TCI America

  • (N0166)  2-Norbornene  >99.0%(GC)

  • 498-66-8

  • 400g

  • 480.00CNY

  • Detail
  • Alfa Aesar

  • (L11103)  Norbornene, 99%   

  • 498-66-8

  • 100g

  • 198.0CNY

  • Detail
  • Alfa Aesar

  • (L11103)  Norbornene, 99%   

  • 498-66-8

  • 500g

  • 606.0CNY

  • Detail
  • Aldrich

  • (N32407)  Bicyclo[2.2.1]hept-2-ene  99%

  • 498-66-8

  • N32407-100G

  • 231.66CNY

  • Detail
  • Aldrich

  • (N32407)  Bicyclo[2.2.1]hept-2-ene  99%

  • 498-66-8

  • N32407-500G

  • 705.51CNY

  • Detail

498-66-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name norbornene

1.2 Other means of identification

Product number -
Other names 2-Norbornene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:498-66-8 SDS

498-66-8Synthetic route

exo-3-(trimethylsilyl)-endo-2-norbornyl trifluoroacetate
129850-00-6, 129938-42-7

exo-3-(trimethylsilyl)-endo-2-norbornyl trifluoroacetate

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With water In acetone at 65.1℃; Kinetics; Product distribution; Rate constant;98%
(1R,2S,3R,4S)-2,3-Bis-trimethylsilanyl-bicyclo[2.2.1]heptane

(1R,2S,3R,4S)-2,3-Bis-trimethylsilanyl-bicyclo[2.2.1]heptane

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
In methanol electrochemical oxidation;96%
trans-1,2-bis(hydroxydiphenylmethyl)bicyclo<2.2.1>heptane

trans-1,2-bis(hydroxydiphenylmethyl)bicyclo<2.2.1>heptane

A

norborn-2-ene
498-66-8

norborn-2-ene

B

benzophenone
119-61-9

benzophenone

C

1,1-Diphenylmethanol
91-01-0

1,1-Diphenylmethanol

D

1,1-diphenylmethylenenorbornane
50599-53-6

1,1-diphenylmethylenenorbornane

Conditions
ConditionsYield
at 290℃; for 3h;A 27%
B 95%
C 15%
D 64%
exo-2,3-epoxynorbornane
844874-18-6

exo-2,3-epoxynorbornane

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With polystyrene-supported(catecholato)oxoRe cat. act. by iPrOH; triphenylphosphine In toluene for 8h; Heating;92%
5-norbornen-2-ol mesylate

5-norbornen-2-ol mesylate

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With lithium triethylborohydride In tetrahydrofuran at 60℃; for 4h;85%
exo-2,3-epoxynorbornane
278-74-0, 3146-39-2, 57378-36-6

exo-2,3-epoxynorbornane

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With triphenylphosphine at 200℃; for 8.5h; Product distribution;84%
endo-3-(Trimethylsilyl)bicyclo<2.2.1>heptan-endo-2-carbonsaeure
113475-46-0

endo-3-(Trimethylsilyl)bicyclo<2.2.1>heptan-endo-2-carbonsaeure

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
In ethanol; acetonitrile at 60℃; anodic oxidation;60%
With potassium hydroxide In ethanol; acetonitrile at 60℃; electrolysis: C-anode, Pt-catode;60 % Chromat.
ethanol
64-17-5

ethanol

Potassium; (1R,2S,3R,4S)-3-trimethylsilanyl-bicyclo[2.2.1]heptane-2-carboxylate
88946-66-1

Potassium; (1R,2S,3R,4S)-3-trimethylsilanyl-bicyclo[2.2.1]heptane-2-carboxylate

A

norborn-2-ene
498-66-8

norborn-2-ene

2-(trimethylsilyl)bicyclo[2.2.1]hept-2-ene
16205-87-1

2-(trimethylsilyl)bicyclo[2.2.1]hept-2-ene

((1R,2R,3R,4S)-3-Ethoxy-bicyclo[2.2.1]hept-2-yl)-trimethyl-silane
88946-64-9

((1R,2R,3R,4S)-3-Ethoxy-bicyclo[2.2.1]hept-2-yl)-trimethyl-silane

Conditions
ConditionsYield
In acetonitrile at 0℃; Product distribution; anidic decarboxylation, other solvens, temperature;A 51%
B 14%
C 17%
C14H15N2O2S(1-)*Na(1+)
54389-06-9

C14H15N2O2S(1-)*Na(1+)

A

norborn-2-ene
498-66-8

norborn-2-ene

B

Bicyclo<3.2.0>heptadien-1,6
32316-40-8

Bicyclo<3.2.0>heptadien-1,6

C

toluene
108-88-3

toluene

D

spiro[2.4]hepta-4,6-diene
765-46-8

spiro[2.4]hepta-4,6-diene

Conditions
ConditionsYield
at 275℃; under 0.0001 - 0.0004 Torr;A 2.7%
B 51%
C 0.9%
D 4.9%
2-endo-(Dichloroamino)norbornane
78685-90-2

2-endo-(Dichloroamino)norbornane

A

norborn-2-ene
498-66-8

norborn-2-ene

B

2-(Chloroimino)norbornane
78685-89-9

2-(Chloroimino)norbornane

Conditions
ConditionsYield
A 12%
B 50%
2-exo-(Dichloroamino)norbornane
78685-88-8

2-exo-(Dichloroamino)norbornane

A

norborn-2-ene
498-66-8

norborn-2-ene

B

2-(Chloroimino)norbornane
78685-89-9

2-(Chloroimino)norbornane

Conditions
ConditionsYield
A 11%
B 48%
methyllithium
917-54-4

methyllithium

7,7-dibromo-2-norbornene
77333-79-0

7,7-dibromo-2-norbornene

A

norborn-2-ene
498-66-8

norborn-2-ene

B

syn-7-bromobicyclo<2.2.1>heptene
60154-55-4

syn-7-bromobicyclo<2.2.1>heptene

C

Bicyclo<3.2.0>heptadien-1,6
32316-40-8

Bicyclo<3.2.0>heptadien-1,6

D

syn-7-bromo-7-methylnorbornene
14025-97-9, 86970-70-9

syn-7-bromo-7-methylnorbornene

E

spiro[2.4]hepta-4,6-diene
765-46-8

spiro[2.4]hepta-4,6-diene

Conditions
ConditionsYield
at 100℃; under 0.005 Torr; Product distribution; other reaction conditions;A 0.1%
B 20.5%
C 47.5%
D 6.6%
E 12.6%
methanol
67-56-1

methanol

Potassium; (1R,2S,3R,4S)-3-trimethylsilanyl-bicyclo[2.2.1]heptane-2-carboxylate
88946-66-1

Potassium; (1R,2S,3R,4S)-3-trimethylsilanyl-bicyclo[2.2.1]heptane-2-carboxylate

A

norborn-2-ene
498-66-8

norborn-2-ene

2-(trimethylsilyl)bicyclo[2.2.1]hept-2-ene
16205-87-1

2-(trimethylsilyl)bicyclo[2.2.1]hept-2-ene

((1R,2R,3R,4S)-3-Methoxy-bicyclo[2.2.1]hept-2-yl)-trimethyl-silane
88946-63-8

((1R,2R,3R,4S)-3-Methoxy-bicyclo[2.2.1]hept-2-yl)-trimethyl-silane

Conditions
ConditionsYield
In acetonitrile at 0℃; Product distribution; anidic decarboxylation, other solvens, temperature;A 19%
B 17%
C 44%
α-chloronorbornene
694-93-9, 29685-80-1

α-chloronorbornene

tert.-butyl lithium
594-19-4

tert.-butyl lithium

A

norborn-2-ene
498-66-8

norborn-2-ene

B

3-tert-butyltricyclo<2.2.1.02,6>heptane

3-tert-butyltricyclo<2.2.1.02,6>heptane

Conditions
ConditionsYield
In tetrahydrofuran; pentane at 25℃;A 38%
B 44%
α-chloronorbornene
694-93-9, 29685-80-1

α-chloronorbornene

A

norborn-2-ene
498-66-8

norborn-2-ene

B

3-tert-butyltricyclo<2.2.1.02,6>heptane

3-tert-butyltricyclo<2.2.1.02,6>heptane

Conditions
ConditionsYield
With tert.-butyl lithium In tetrahydrofuran; pentane at 25℃;A 38%
B 44%
C14H15N2O2S(1-)*Na(1+)

C14H15N2O2S(1-)*Na(1+)

A

3-[2-(3-cyclopentenyl)ethenylidene]nortricyclane

3-[2-(3-cyclopentenyl)ethenylidene]nortricyclane

B

norborn-2-ene
498-66-8

norborn-2-ene

C

nortricyclane
279-19-6

nortricyclane

D

4-ethynylcyclopentene
330654-57-4

4-ethynylcyclopentene

Conditions
ConditionsYield
at 190℃; under 0.05 Torr; for 2h; Pyrolysis;A 38.7%
B 8.3%
C 9.2%
D 41.8%
(+/-)-endo-2-norborneol
497-36-9

(+/-)-endo-2-norborneol

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With copper(II) bis(trifluoromethanesulfonate)32%
Conditions
ConditionsYield
With copper(II) bis(trifluoromethanesulfonate)30%
ethene
74-85-1

ethene

endo-Dicyclopentadien
1755-01-7

endo-Dicyclopentadien

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
at 190 - 200℃; under 73550.8 - 117681 Torr;
norbornyl chloride
29342-53-8

norbornyl chloride

norborn-2-ene
498-66-8

norborn-2-ene

Conditions
ConditionsYield
With quinoline
norborn-2-ene
498-66-8

norborn-2-ene

cis-cyclopentane-1,3-dicarboxaldehyde
10283-91-7

cis-cyclopentane-1,3-dicarboxaldehyde

Conditions
ConditionsYield
With potassium permanganate; copper(II) sulfate; tert-butyl alcohol In dichloromethane; water at 22℃; for 12h;100%
With sodium periodate; ruthenium In water; 1,2-dichloro-ethane at 20℃; for 3h;72%
With ruthenium trichloride; Oxone; sodium hydrogencarbonate In water; acetonitrile at 20℃; for 0.7h;72%
norborn-2-ene
498-66-8

norborn-2-ene

exo-2,3-epoxynorbornane
844874-18-6

exo-2,3-epoxynorbornane

Conditions
ConditionsYield
With pyridine N-oxide; oxochromium(V) complex of tetramethylsalen IIb In acetonitrile100%
With cobalt(III) acetylacetonate; oxygen In tetrahydrofuran at 70℃; for 24h;98%
With [2-percarboxyethyl] functionalized silica In dichloromethane at 20℃; for 1h;95%
norborn-2-ene
498-66-8

norborn-2-ene

Phenylselenyl chloride
5707-04-0

Phenylselenyl chloride

endo-3-chloro-exo-2-phenylselenobicyclo<2.2.1>heptane
70303-01-4

endo-3-chloro-exo-2-phenylselenobicyclo<2.2.1>heptane

Conditions
ConditionsYield
In dichloromethane100%
In water; acetonitrile for 24h; Ambient temperature;84%
In dichloromethane at 25℃;100 % Spectr.
norborn-2-ene
498-66-8

norborn-2-ene

ethyl chloro(2-phenylhydrazono)acetate
28663-68-5

ethyl chloro(2-phenylhydrazono)acetate

(3aS,7aR)-1-Phenyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methano-indazole-3-carboxylic acid ethyl ester

(3aS,7aR)-1-Phenyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methano-indazole-3-carboxylic acid ethyl ester

Conditions
ConditionsYield
With triethylamine In chloroform for 2h; Heating;100%
norborn-2-ene
498-66-8

norborn-2-ene

2-diazo-4,5-dicyano-2H-imidazole
51285-29-1

2-diazo-4,5-dicyano-2H-imidazole

(5aα,6β,9β,9aα)-5a,6,7,8,9,9a-hexahydro-6,9-methanoimidazo<2,1-c><1,2,4>benzotriazine-1,2-dicarbonitrile
111005-26-6

(5aα,6β,9β,9aα)-5a,6,7,8,9,9a-hexahydro-6,9-methanoimidazo<2,1-c><1,2,4>benzotriazine-1,2-dicarbonitrile

Conditions
ConditionsYield
In dichloromethane at -15℃; for 360h;100%
norborn-2-ene
498-66-8

norborn-2-ene

4-methyl-5-methylidene-4-phenyl-1,3-dioxolan-2-one
95323-23-2

4-methyl-5-methylidene-4-phenyl-1,3-dioxolan-2-one

3-(2-phenylpropanoyl)tricyclo<3.2.1.02,4>octane

3-(2-phenylpropanoyl)tricyclo<3.2.1.02,4>octane

Conditions
ConditionsYield
tetrakis(triphenylphosphine) palladium(0) In toluene for 15h; Mechanism; Heating; other substrates, other alkenes, other catalysts;100%
tetrakis(triphenylphosphine) palladium(0) In toluene for 15h; Heating;100%
norborn-2-ene
498-66-8

norborn-2-ene

2,3-epoxynorbornane
278-74-0

2,3-epoxynorbornane

Conditions
ConditionsYield
With hemin polymer (1); 1,2,3,4,5-pentafluoro-6-iodosylbenzene In dichloromethane; water for 0.05h;100%
With 3-chloro-benzenecarboperoxoic acid; iron(III) perchlorate In acetonitrile at -10℃; for 0.0833333h;100%
With oxygen; isobutyraldehyde In acetonitrile at 40℃; for 6h;99%
norborn-2-ene
498-66-8

norborn-2-ene

norbornene
279-23-2

norbornene

Conditions
ConditionsYield
With 1-Thia-3,4-diazolidine-2,5-dione In various solvent(s) Ambient temperature; Irradiation;100%
With {(η6-C6H6)Ru(NCCH3)3}{BF4}2; water; hydrogen In benzene at 90℃; under 30400 Torr; for 4h;100%
With C28H18Co(1-)*K(1+)*2C4H10O2; hydrogen In toluene at 60℃; under 1500.15 Torr; for 24h; chemoselective reaction;100%
norborn-2-ene
498-66-8

norborn-2-ene

exo,exo-2,3-dideuterionorbornane
111275-13-9

exo,exo-2,3-dideuterionorbornane

Conditions
ConditionsYield
With deuterium; Wilkinson's catalyst In toluene100%
With lithium aluminium deuteride; deuteropropionic acid; boron trifluoride diethyl etherate 1.) diglyme, 1 h, RT; 2.) diglyme, 140 deg C, 2 h; Yield given. Multistep reaction;
With deuterium; (iPrPDI)Fe(N2)2 at 22℃; under 760 Torr;
With BF4(1-)*C30H42N3PRh(1+); deuterium at 110℃; under 2585.81 Torr; for 24h; Inert atmosphere; Autoclave sealed;
With tetrahydroxydiborane(4); palladium 10% on activated carbon; water-d2 In dichloromethane at 20℃; for 5h; Mechanism; Inert atmosphere; Glovebox;
norborn-2-ene
498-66-8

norborn-2-ene

exo-2-trichlorosilylnorbornane
146075-48-1

exo-2-trichlorosilylnorbornane

Conditions
ConditionsYield
With (Ra)-(2'-methoxy-[1,1']-binaphthalenyl-2-yl)-diphenylphosphine; trichlorosilane; bis(η3-allyl-μ-chloropalladium(II)) at 0℃; for 24h; Product distribution; other bicycloalkenes, stereoselectivity;100%
With trichlorosilane; (Ra)-(2'-methoxy-[1,1']-binaphthalenyl-2-yl)-diphenylphosphine; bis(η3-allyl-μ-chloropalladium(II)) at -20℃; for 72h;99%
norborn-2-ene
498-66-8

norborn-2-ene

carbon monoxide
201230-82-2

carbon monoxide

hex-1-yne
693-02-7

hex-1-yne

(3aSR,4SR,7RS,7aSR)-2-butyl-3a,4,5,6,7,7a-hexahydro-4,7-methanoinden-1-one
143768-88-1

(3aSR,4SR,7RS,7aSR)-2-butyl-3a,4,5,6,7,7a-hexahydro-4,7-methanoinden-1-one

Conditions
ConditionsYield
dodecacarbonyl tetracobalt In dichloromethane at 150℃; under 7600 Torr; for 22h;100%
Co2Rh2 nanoparticles immobilized on charcoal In tetrahydrofuran at 130℃; under 760 Torr; for 18h; intermolecular Pauson-Khand reaction;60%
norborn-2-ene
498-66-8

norborn-2-ene

1-decyne
764-93-2

1-decyne

carbon monoxide
201230-82-2

carbon monoxide

(3aR,4R,7S,7aR)-2-Octyl-3a,4,5,6,7,7a-hexahydro-4,7-methano-inden-1-one
123844-39-3

(3aR,4R,7S,7aR)-2-Octyl-3a,4,5,6,7,7a-hexahydro-4,7-methano-inden-1-one

Conditions
ConditionsYield
With 1,2-dimethoxyethane; dicobalt octacarbonyl In toluene at 120℃; under 5320 Torr; for 10h;100%
With cobalt(II) bromide; zinc In toluene; tert-butyl alcohol 25 deg C, 5 h; 110 deg C, 24 h;85%
norborn-2-ene
498-66-8

norborn-2-ene

alkoxy acetylene dicobalt hexacarbonyl complex (3e)

alkoxy acetylene dicobalt hexacarbonyl complex (3e)

(4S,7R)-2-[(1S,2R,3S,4R)-3-(2,2-Dimethyl-propoxy)-4,7,7-trimethyl-bicyclo[2.2.1]hept-2-yloxy]-3a,4,5,6,7,7a-hexahydro-4,7-methano-inden-1-one

(4S,7R)-2-[(1S,2R,3S,4R)-3-(2,2-Dimethyl-propoxy)-4,7,7-trimethyl-bicyclo[2.2.1]hept-2-yloxy]-3a,4,5,6,7,7a-hexahydro-4,7-methano-inden-1-one

Conditions
ConditionsYield
In 2,2,4-trimethylpentane Heating;100%
norborn-2-ene
498-66-8

norborn-2-ene

hexacarbonyl(2-methylbut-3-yn-2-ol)dicobalt

hexacarbonyl(2-methylbut-3-yn-2-ol)dicobalt

exo-3a,4,5,6,7,7a-Hexahydro-2-(1-hydroxymethylethyl)-4,7-methano-1H-inden-1-one

exo-3a,4,5,6,7,7a-Hexahydro-2-(1-hydroxymethylethyl)-4,7-methano-1H-inden-1-one

Conditions
ConditionsYield
With polymer-supported 4-methylmorpholine-N-oxide In dichloromethane at 20℃; for 2.5h; Cycloaddition; Pauson-Khand reaction;100%
With morpholine N-oxide resin In tetrahydrofuran at 20℃; for 0.5h; Cycloaddition; Pauson-Khand reaction;91%
norborn-2-ene
498-66-8

norborn-2-ene

N-((1R,2S,4R)-4-Bicyclo[2.2.1]hept-5-en-2-yl-benzenesulfonylmethyl)-formamide

N-((1R,2S,4R)-4-Bicyclo[2.2.1]hept-5-en-2-yl-benzenesulfonylmethyl)-formamide

polymer, copolymerization; monomers: N-[4-(exo-bicyclo[2.2.1]hept-5-en-1-yl)phenylsulfonylmethyl]formamide; norbornene

polymer, copolymerization; monomers: N-[4-(exo-bicyclo[2.2.1]hept-5-en-1-yl)phenylsulfonylmethyl]formamide; norbornene

Conditions
ConditionsYield
Stage #1: norborn-2-ene; N-((1R,2S,4R)-4-Bicyclo[2.2.1]hept-5-en-2-yl-benzenesulfonylmethyl)-formamide; Grubbs catalyst first generation In dichloromethane at 20℃; for 0.5h;
Stage #2: With ethyl vinyl ether Further stages.;
100%
norborn-2-ene
498-66-8

norborn-2-ene

bis(pinacol)diborane
73183-34-3

bis(pinacol)diborane

4,4,5,5-Tetramethyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[2.2.1]hept-2-yl]-1,3,2-dioxaborolane

4,4,5,5-Tetramethyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[2.2.1]hept-2-yl]-1,3,2-dioxaborolane

Conditions
ConditionsYield
With tris(bicyclo[2.2.1]heptene)palladium; triphenylphosphine at 20℃; for 2h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene)

poly(norbornene)

Conditions
ConditionsYield
[=CHPh][1,3-(PhEt)2-2-imidazolinylidene][1-(2Py)Pr-2-O]RuCl2 In toluene at 60℃; for 0.25h; Product distribution; Further Variations:; Catalysts; Temperatures; Solvents;100%
With Allyl acetate; C45H84Cl2P2RuSi In toluene at 40℃;99%
With Allyl acetate; Grubbs catalyst first generation In toluene at 40℃;99%
norborn-2-ene
498-66-8

norborn-2-ene

trans(cis)-poly[norbornene]; Mn: 84000; PDI: 1.51

trans(cis)-poly[norbornene]; Mn: 84000; PDI: 1.51

Conditions
ConditionsYield
[2-methyliminomethyl-4-nitrophenol][PCy3][=CHPh]RuCl In chlorobenzene at 70℃; for 4h; Product distribution; Further Variations:; Catalysts;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(1,3-cyclopentylenevinylene), polydispersity index 1.31, cis configuration 23 percent; Monomer(s): norbornene

poly(1,3-cyclopentylenevinylene), polydispersity index 1.31, cis configuration 23 percent; Monomer(s): norbornene

Conditions
ConditionsYield
Schiff base substituted ruthenium benzylidene; 1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene In toluene at 70℃; for 4h; ring-opening metathesis polymerization;100%
norborn-2-ene
498-66-8

norborn-2-ene

iodobenzene
591-50-4

iodobenzene

Conditions
ConditionsYield
With formic acid; triethylamine; [Pd(Cl)(L-κ-C,N,N)] In dimethyl sulfoxide at 90℃; for 15h; Heck hydroarylation;100%
With formic acid; chloro[2-(3-methyl-3,7-diazabicyclo[3.3.1]nonan-3-ylmethyl)phenyl-C,N,N]palladium; triethylamine In dimethyl sulfoxide at 65℃; for 5h;99%
With formic acid; C19H23ClFeN2OPd; triethylamine In dimethyl sulfoxide at 65℃; for 5h; Heck Reaction;97%
With formic acid; 3-(2-(diphenylarsinyl)benzyl)-1-phenyl-1H-imidazol-3-ium chloride; triethylamine; bis(dibenzylideneacetone)-palladium(0) In dimethyl sulfoxide at 60℃; for 22h; Heck reaction; Inert atmosphere;86%
With formic acid; C18H12Cl2N2O2Pd; triethylamine In dimethyl sulfoxide at 65℃; for 5h;77%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 2.50E5 Da, Mw/Mn 1.40 by GPC; monomer(s): norbornene

poly(norbornene), Mn 2.50E5 Da, Mw/Mn 1.40 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With (2,6-(2,6-iPr2C6H3N=CMe)2C5H3N)MoCl3; triethylaluminum In toluene at 25℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 2.59E5 Da, Mw/Mn 1.54 by GPC; monomer(s): norbornene

poly(norbornene), Mn 2.59E5 Da, Mw/Mn 1.54 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With (2,6-(2,6-iPr2C6H3N=CMe)2C5H3N)MoCl3; triethylaluminum In toluene at 60℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 2.83E5 Da, Mw/Mn 1.47 by GPC; monomer(s): norbornene

poly(norbornene), Mn 2.83E5 Da, Mw/Mn 1.47 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With (2,6-(2,6-iPr2C6H3N=CMe)2C5H3N)MoCl3; triethylaluminum In toluene at 25℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 3.02E5 Da, Mw/Mn 1.50 by GPC; monomer(s): norbornene

poly(norbornene), Mn 3.02E5 Da, Mw/Mn 1.50 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With (2,6-(2,6-iPr2C6H3N=CMe)2C5H3N)MoCl3; triethylaluminum In toluene at 60℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 2.41E5 Da, Mw/Mn 1.33 by GPC; monomer(s): norbornene

poly(norbornene), Mn 2.41E5 Da, Mw/Mn 1.33 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine-MoCl3; triethylaluminum In toluene at 25℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 5.36E5 Da, Mw/Mn 1.50 by GPC; monomer(s): norbornene

poly(norbornene), Mn 5.36E5 Da, Mw/Mn 1.50 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine-MoCl3; triethylaluminum In toluene at 60℃; for 6h;100%
norborn-2-ene
498-66-8

norborn-2-ene

poly(norbornene), Mn 5.48E5 Da, Mw/Mn 1.45 by GPC; monomer(s): norbornene

poly(norbornene), Mn 5.48E5 Da, Mw/Mn 1.45 by GPC; monomer(s): norbornene

Conditions
ConditionsYield
With (2,6-(2,6-iPr2C6H3N=CMe)2C5H3N)MoCl3; modified methylaluminoxane with AlMeO:Al-isoBuO In toluene at 60℃; for 12h;100%

498-66-8Relevant articles and documents

Oshima,Tabuchi

, p. 211,212 (1968)

Structure and reactivity of lithium diisopropylamide solvated by polyamines: Evidence of monomer- and dimer-based dehydrohalogenations

Remenar, Julius F.,Collum, David B.

, p. 4081 - 4086 (1998)

6Li and 15N NMR spectroscopic studies show that hexane solutions of LDA containing 1.0 equiv of PMDTA per lithium, monomer is the dominant species. Addition of PMDTA to LDA in toluene affords open dimer at low [PMDTA] and a mixture of LDA monomer and benzyllithium (resulting from toluene deprotonation) at high [PMDTA]. The results are compared and contrasted with previous investigations of LDA solvated by N,N,N',N'-tetramethylethylenediamine (TMEDA) and (±)-trans- N,N,N',N'-tetramethylcyclohexanediamine (TMCDA). The reactivities of LDA solvated by TMEDA, TMCDA, and PMDTA were probed by investigating the dehydrohalogenation of (±)-2-exo-bromonorbornane. All three ligands afford qualitatively similar behavior: (1) a maximum reactivity at low ligand concentrations ascribed to monosolvated LDA dimers and (2) ligand- concentration-independent rates at high ligand concentrations ascribed to monosolvated LDA monomers. Structure and rate differences in hexane and toluene solutions are noted.

Brown,Liu

, p. 2469,2470,2474,2475 (1975)

Homogeneous hydrogenation of norbornadiene with parahydrogen and phosphonic ester phosphine rhodium complexes studied by in situ NMR spectroscopy

Harthun,Woelk,Bargon,Weigt

, p. 11199 - 11206 (1995)

Homogeneous hydrogenation of norbornadiene with enriched parahydrogen (p-H2) and phosphonic ester phosphine rhodium complexes is detected using in situ NMR spectroscopy. The obtained polarization spectra remain unchanged during the catalysis of thf-d8 as a solvent but change with time when the hydrogenation is executed in acetone-d6. The observed phenomenon is attributed to a change of the phase correlation of the transferred parahydrogen nuclei via nuclear singlet-triplet (S/T0) mixing during the reaction. Simultaneously, 31P NMR spectra change indicating a change in the nature of the original rhodium complex when the hydrogenation is carried out in acetone-d6.

Wittig,Klumpp

, p. 607 (1963)

Chelation-based stabilization of the transition structure in a lithium diisopropylamide mediated dehydrobromination: Avoiding the 'universal ground state' assumption

Remenar, Julius F.,Collum, David B.

, p. 5573 - 5582 (1997)

Dehydrobrominations of (±)-2-exo-bromonorbornane (RBr) by lithium diisopropylamide (LDA) were investigated to determine the roles of aggregation and solvation. Elimination with LDA/n-BuOMe occurs by deaggregation of disolvated dimers via a monosolvated monomer transition structure (e.g., [i-Pr2NLi·n-BuOme·-RBr]. In contrast, elimination by LDA- THF displays THF concentration dependencies that are consistent with parallel reaction pathways involving both mono- and disolvated monomer transition structures. Elimination is markedly faster by LDA-DME than by LDA with monodentate ligands and follows a rate law consistent with a transition structure containing a chelated monomeric LDA fragment. A number of hemilabile amino ethers reveal the capacity of different coordinating functionalities to chelate. A protocol based upon kinetic methods affords the relative ligand binding energies in the LDA dimer reactants. Separating contributions of ground state from transition state stabilization allows us to attribute the stabilizing effects of chelation exclusively to the transition structure. The importance of chelating ligands in LDA-mediated dehydrobrominations, but not in previously studied reactions of LDA, sheds light on lithium ion chelation.

Gallazzi et al.

, p. C45 (1971)

Iridium-Catalyzed Asymmetric Hydroalkenylation of Norbornene Derivatives

Sun, Xin,Bai, Xiao-Yan,Li, An-Zhen,Li, Bi-Jie

supporting information, p. 2182 - 2187 (2021/03/01)

Transition-metal-catalyzed asymmetric hydroalkenylation of alkenes provides an atom-economical method to build molecular complexity from easily available materials. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of unconjugated alkenes with acrylamides and acrylates. The catalytic hydroalkenylation of norbornene derivatives occurred to form products with allylic stereocenters with high chemo-, regio-, and stereoselectivities. DFT calculations revealed that the migratory insertion is irreversible and the enantiodetermination step.

Understanding the roles of variable Pd(II)/Pd(0) ratio supported on conjugated poly-azobenzene network: From characteristic alteration in properties to their cooperation towards visible-light-induced selective hydrogenation

Nath, Ipsita,Chakraborty, Jeet,Zhang, Gaoke,Chen, Cheng,Chaemchuen, Somboon,Park, Jihae,Zhuiykov, Serge,Han, Taejun,Verpoort, Francis

, p. 120 - 128 (2020/04/15)

Selective hydrogenation of organic functionalities at environmentally benign conditions using visible light is of great industrial and economic significance. Herein we report visible-light-induced rapid, almost quantitative and selective hydrogenation of olefins to respective mono-reduced products using cooperative performance of Pd(0) nanoparticles (NPs) and Pd(II) ions evenly distributed on a newly synthesized conjugated mesoporous poly-azobenzene network. Role of variable Pd(0)/Pd(II) ratio on the properties of polymeric networks and their overall catalytic abilities is critically investigated. This is the first proposed example of cooperative hydrogenation by simultaneous activation of H2 and unsaturated substrates using Mott-Schottky heterojunction between Pd NPs and the semiconducting polymer, with the help of Pd(II)-site-mediated η-coordination. A control over selective mono-reduction of diene with identical double bonds was also obtained. The catalytic activity retained for other non-olefinic functionalities as well.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 498-66-8