Welcome to LookChem.com Sign In|Join Free

CAS

  • or

55096-88-3

Post Buying Request

55096-88-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

55096-88-3 Usage

Uses

It is used as pharmaceutical intermediate.

Check Digit Verification of cas no

The CAS Registry Mumber 55096-88-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,5,0,9 and 6 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 55096-88:
(7*5)+(6*5)+(5*0)+(4*9)+(3*6)+(2*8)+(1*8)=143
143 % 10 = 3
So 55096-88-3 is a valid CAS Registry Number.
InChI:InChI=1/C14H14FN/c15-14-8-6-13(7-9-14)11-16-10-12-4-2-1-3-5-12/h1-9,16H,10-11H2

55096-88-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H56362)  N-Benzyl-4-fluorobenzylamine, 97%   

  • 55096-88-3

  • 250mg

  • 1470.0CNY

  • Detail
  • Alfa Aesar

  • (H56362)  N-Benzyl-4-fluorobenzylamine, 97%   

  • 55096-88-3

  • 1g

  • 4704.0CNY

  • Detail

55096-88-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name N-[(4-fluorophenyl)methyl]-1-phenylmethanamine

1.2 Other means of identification

Product number -
Other names n-benzyl-1-(4-fluorophenyl)methanamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:55096-88-3 SDS

55096-88-3Relevant articles and documents

Switching Selectivity in Copper-Catalyzed Transfer Hydrogenation of Nitriles to Primary Amine-Boranes and Secondary Amines under Mild Conditions

Song, Hao,Xiao, Yao,Zhang, Zhuohua,Xiong, Wanjin,Wang, Ren,Guo, Liangcheng,Zhou, Taigang

, p. 790 - 800 (2022/01/11)

A simple and efficient copper-catalyzed selective transfer hydrogenation of nitriles to primary amine-boranes and secondary amines with an oxazaborolidine-BH3 complex is reported. The selectivity control was achieved under mild conditions by switching the solvent and the copper catalysts. More than 30 primary amine-boranes and 40 secondary amines were synthesized via this strategy in high selectivity and yields of up to 95%. The strategy was applied to the synthesis of 15N labeled in 89% yield.

Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis

Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal

, p. 3943 - 3957 (2021/04/12)

The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.

A practical catalytic reductive amination of carboxylic acids

Andrews, Keith G.,Denton, Ross M.,Hirst, David J.,Stoll, Emma L.,Tongue, Thomas,Valette, Damien

, p. 9494 - 9500 (2020/10/02)

We report reductive alkylation reactions of amines using carboxylic acids as nominal electrophiles. The two-step reaction exploits the dual reactivity of phenylsilane and involves a silane-mediated amidation followed by a Zn(OAc)2-catalyzed amide reduction. The reaction is applicable to a wide range of amines and carboxylic acids and has been demonstrated on a large scale (305 mmol of amine). The rate differential between the reduction of tertiary and secondary amide intermediates is exemplified in a convergent synthesis of the antiretroviral medicine maraviroc. Mechanistic studies demonstrate that a residual 0.5 equivalents of carboxylic acid from the amidation step is responsible for the generation of silane reductants with augmented reactivity, which allow secondary amides, previously unreactive in zinc/phenylsilane systems, to be reduced.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 55096-88-3