Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5664-21-1

Post Buying Request

5664-21-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5664-21-1 Usage

Synthesis Reference(s)

Journal of the American Chemical Society, 108, p. 1325, 1986 DOI: 10.1021/ja00266a049Tetrahedron Letters, 21, p. 1559, 1980 DOI: 10.1016/S0040-4039(00)92774-6

Check Digit Verification of cas no

The CAS Registry Mumber 5664-21-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,6,6 and 4 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 5664-21:
(6*5)+(5*6)+(4*6)+(3*4)+(2*2)+(1*1)=101
101 % 10 = 1
So 5664-21-1 is a valid CAS Registry Number.
InChI:InChI=1/C8H14O/c9-7-6-8-4-2-1-3-5-8/h7-8H,1-6H2

5664-21-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Cyclohexylacetaldehyde

1.2 Other means of identification

Product number -
Other names 2-cyclohexyl-acetaldehyde

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5664-21-1 SDS

5664-21-1Relevant articles and documents

Rh2(II)-Catalyzed intermolecular N-Aryl aziridination of olefins using nonactivated N atom precursors

Deng, Tianning,Mazumdar, Wrickban,Yoshinaga, Yuki,Patel, Pooja B.,Malo, Dana,Malo, Tala,Wink, Donald J.,Driver, Tom G.

supporting information, p. 19149 - 19159 (2021/11/23)

The development of the first intermolecular Rh2(II)-catalyzed aziridination of olefins using anilines as nonactivated N atom precursors and an iodine(III) reagent as the stoichiometric oxidant is reported. This reaction requires the transfer of an N-aryl nitrene fragment from the iminoiodinane intermediate to a Rh2(II) carboxylate catalyst; in the absence of a catalyst only diaryldiazene formation was observed. This N-aryl aziridination is general and can be successfully realized by using as little as 1 equiv of the olefin. Di-, tri-, and tetrasubstituted cyclic or acylic olefins can be employed as substrates, and a range of aniline and heteroarylamine N atom precursors are tolerated. The Rh2(II)-catalyzed N atom transfer to the olefin is stereospecific as well as chemo- and diastereoselective to produce the N-aryl aziridine as the only amination product. Because the chemistry of nonactivated N-aryl aziridines is underexplored, the reactivity of N-aryl aziridines was explored toward a range of nucleophiles to stereoselectively access privileged 1,2-stereodiads unavailable from epoxides, and removal of the N-2,4-dinitrophenyl group was demonstrated to show that functionalized primary amines can be constructed.

Mechanistic investigation on the remote stereocontrol in the chiral Lewis base-catalyzed, SiCl4-promoted kinetic resolution of chlorinated cis-vinyl epoxides

Jung, Jungi,Song, Mugeon,Choi, Jun-Ho,Chung, Won-jin

, (2020/11/27)

It has been known that the enantioselectivity of the chiral Lewis base-catalyzed, SiCl4-promoted kinetic resolution of α,β-dichloro cis-vinyl epoxide is highly influenced by the configuration of the distal β-chlorine-bearing stereocenter. In th

The formyloxyl radical: Electrophilicity, C-H bond activation and anti-Markovnikov selectivity in the oxidation of aliphatic alkenes

Iron, Mark A.,Khenkin, Alexander M.,Neumann, Ronny,Somekh, Miriam

, p. 11584 - 11591 (2020/11/23)

In the past the formyloxyl radical, HC(O)O, had only been rarely experimentally observed, and those studies were theoretical-spectroscopic in the context of electronic structure. The absence of a convenient method for the preparation of the formyloxyl radical has precluded investigations into its reactivity towards organic substrates. Very recently, we discovered that HC(O)O is formed in the anodic electrochemical oxidation of formic acid/lithium formate. Using a [CoIIIW12O40]5- polyanion catalyst, this led to the formation of phenyl formate from benzene. Here, we present our studies into the reactivity of electrochemically in situ generated HC(O)O with organic substrates. Reactions with benzene and a selection of substituted derivatives showed that HC(O)O is mildly electrophilic according to both experimentally and computationally derived Hammett linear free energy relationships. The reactions of HC(O)O with terminal alkenes significantly favor anti-Markovnikov oxidations yielding the corresponding aldehyde as the major product as well as further oxidation products. Analysis of plausible reaction pathways using 1-hexene as a representative substrate favored the likelihood of hydrogen abstraction from the allylic C-H bond forming a hexallyl radical followed by strongly preferred further attack of a second HC(O)O radical at the C1 position. Further oxidation products are surmised to be mostly a result of two consecutive addition reactions of HC(O)O to the CC double bond. An outer-sphere electron transfer between the formyloxyl radical donor and the [CoIIIW12O40]5- polyanion acceptor forming a donor-acceptor [D+-A-] complex is proposed to induce the observed anti-Markovnikov selectivity. Finally, the overall reactivity of HC(O)O towards hydrogen abstraction was evaluated using additional substrates. Alkanes were only slightly reactive, while the reactions of alkylarenes showed that aromatic substitution on the ring competes with C-H bond activation at the benzylic position. C-H bonds with bond dissociation energies (BDE) ≤ 85 kcal mol-1 are easily attacked by HC(O)O and reactivity appears to be significant for C-H bonds with a BDE of up to 90 kcal mol-1. In summary, this research identifies the reactivity of HC(O)O towards radical electrophilic substitution of arenes, anti-Markovnikov type oxidation of terminal alkenes, and indirectly defines the activity of HC(O)O towards C-H bond activation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5664-21-1