Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5813-86-5

Post Buying Request

5813-86-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5813-86-5 Usage

Uses

3-Methoxybenzamide is act as an inhibitor of ADP-ribosyltransferase. It is also a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 3-Methoxybenzamide are potent antistaphylococcal compounds with suboptimal drug-like properties.

Biological Activity

3-Methoxybenzamide (3-MBA), an inhibitor of ADP-ribosyltransferase (ADPRTs) and PARP, inhibits cell division in Bacillus subtilis, leading to filamentation and eventually lysis of cells. 3-Methoxybenzamide (3-MBA) enhances in vitro plant growth, microtuberization, and transformation efficiency of blue potato (Solanum tuberosum L. subsp. andigenum).

Check Digit Verification of cas no

The CAS Registry Mumber 5813-86-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,8,1 and 3 respectively; the second part has 2 digits, 8 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 5813-86:
(6*5)+(5*8)+(4*1)+(3*3)+(2*8)+(1*6)=105
105 % 10 = 5
So 5813-86-5 is a valid CAS Registry Number.
InChI:InChI=1/C8H9NO2/c1-11-7-4-2-3-6(5-7)8(9)10/h2-5H,1H3,(H2,9,10)

5813-86-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B23204)  3-Methoxybenzamide, 97%   

  • 5813-86-5

  • 5g

  • 294.0CNY

  • Detail
  • Alfa Aesar

  • (B23204)  3-Methoxybenzamide, 97%   

  • 5813-86-5

  • 25g

  • 1121.0CNY

  • Detail

5813-86-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-METHOXYBENZAMIDE

1.2 Other means of identification

Product number -
Other names 3-Methoxy-benzoesaeure-amid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5813-86-5 SDS

5813-86-5Relevant articles and documents

Visible light-mediated synthesis of amides from carboxylic acids and amine-boranes

Chen, Xuenian,Kang, Jia-Xin,Ma, Yan-Na,Miao, Yu-Qi

supporting information, p. 3595 - 3599 (2021/06/06)

Here, a photocatalytic deoxygenative amidation protocol using readily available amine-boranes and carboxylic acids is described. This approach features mild conditions, moderate-to-good yields, easy scale-up, and up to 62 examples of functionalized amides with diverse substituents. The synthetic robustness of this method was also demonstrated by its application in the late-stage functionalization of several pharmaceutical molecules.

A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes

Chatterjee, Basujit,Jena, Soumyashree,Chugh, Vishal,Weyhermüller, Thomas,Werlé, Christophe

, p. 7176 - 7185 (2021/06/30)

The direct synthesis of amides and nitriles from readily available aldehyde precursors provides access to functional groups of major synthetic utility. To date, most reliable catalytic methods have typically been optimized to supply one product exclusively. Herein, we describe an approach centered on an operationally simple iron-based system that, depending on the reaction conditions, selectively addresses either the C=O or C-H bond of aldehydes. This way, two divergent reaction pathways can be opened to furnish both products in high yields and selectivities under mild reaction conditions. The catalyst system takes advantage of iron's dual reactivity capable of acting as (1) a Lewis acid and (2) a nitrene transfer platform to govern the aldehyde building block. The present transformation offers a rare control over the selectivity on the basis of the iron system's ionic nature. This approach expands the repertoire of protocols for amide and nitrile synthesis and shows that fine adjustments of the catalyst system's molecular environment can supply control over bond activation processes, thus providing easy access to various products from primary building blocks.

Supported palladium catalyzed aminocarbonylation of aryl iodides employing bench-stable CO and NH3surrogates

Bains, Rohit,Das, Pralay,Kumar, Ajay,Ram, Shankar,Shaifali,Sheetal

supporting information, p. 7193 - 7200 (2020/10/02)

A simple, efficient and phosphine free protocol for carbonylative synthesis of primary aromatic amides under polystyrene supported palladium (Pd?PS) nanoparticle (NP) catalyzed conditions has been demonstrated. Herein, instead of using two toxic and difficult to handle gases simultaneously, we have employed the solid, economical, bench stable oxalic acid as the CO source and ammonium carbamate as the NH3source in a single pot reaction. For the first time, we have applied two non-gaseous surrogates simultaneously under heterogeneous catalyst (Pd?PS) conditions for the synthesis of primary amides using an easy to handle double-vial (DV) system. The developed strategy showed a good functional group tolerance towards a wide range of aryl iodides and afforded primary aromatic amides in good yields. The Pd?PS catalyst was easy to separate and can be recycled up to four consecutive runs with small loss in catalytic activity. We have successfully extended the scope of the methodology to the synthesis of isoindole-1,3-diones from 1,2-dihalobenzene, 2-halobenzoates and 2-halobenzoic acid following double and single carbonylative cyclization approaches.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5813-86-5