Welcome to LookChem.com Sign In|Join Free

CAS

  • or

58905-18-3

Post Buying Request

58905-18-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

58905-18-3 Usage

Chemical Class

Triazole fungicide

Primary Use

Protection of crops from fungal diseases

Target Crops

Wheat, barley, corn, and other grains

Mechanism of Action

Inhibition of ergosterol biosynthesis in fungal cell membranes

Mode of Action

Disruption of fungal growth and reproduction

Additional Uses

Wood preservation
Control of mold and mildew in industrial and commercial applications

Environmental Concerns

Potential toxicity to aquatic organisms

Regulatory Considerations

Usage must adhere to regulations for environmental safety.

Check Digit Verification of cas no

The CAS Registry Mumber 58905-18-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,8,9,0 and 5 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 58905-18:
(7*5)+(6*8)+(5*9)+(4*0)+(3*5)+(2*1)+(1*8)=153
153 % 10 = 3
So 58905-18-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H9Cl2N3O/c11-7-1-2-8(9(12)3-7)10(16)4-15-6-13-5-14-15/h1-3,5-6,10,16H,4H2/t10-/m0/s1

58905-18-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name α-(2,4-DICHLOROPHENYL)-1H-1,2,4-TRIAZOLE-1-ETHANOL

1.2 Other means of identification

Product number -
Other names AURORA KA-576

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:58905-18-3 SDS

58905-18-3Relevant articles and documents

Lead optimization generates selenium-containing miconazole CYP51 inhibitors with improved pharmacological profile for the treatment of fungal infections

Xu, Hang,Yan, Zhong-zuo,Guo, Meng-bi,An, Ran,Wang, Xin,Zhang, Rui,Mou, Yan-hua,Hou, Zhuang,Guo, Chun

, (2021/03/16)

A series of selenium-containing miconazole derivatives were identified as potent antifungal drugs in our previous study. Representative compound A03 (MIC = 0.01 μg/mL against C.alb. 5314) proved efficacious in inhibiting the growth of fungal pathogens. However, further study showed lead compound A03 exhibited potential hemolysis, significant cytotoxic effect and unfavorable metabolic stability and was therefore modified to overcome these drawbacks. In this article, the further optimization of selenium-containing miconazole derivatives resulted in the discovery of similarly potent compound B17 (MIC = 0.02 μg/mL against C.alb. 5314), exhibiting a superior pharmacological profile with decreased rate of metabolism, cytotoxic effect and hemolysis. Furthermore, compound B17 showed fungicidal activity against Candida albicans and significant effects on the treatment of resistant Candida albicans infections. Meanwhile, compound B17 not only could reduce the ergosterol biosynthesis pathway by inhibiting CYP51, but also inhibited biofilm formation. More importantly, compound B17 also shows promising in vivo efficacy after intraperitoneal injection and the PK study of compound B17 was evaluated. In addition, molecular docking studies provide a model for the interaction between the compound B17 and the CYP51 protein. Overall, we believe that these selenium-containing miconazole compounds can be further developed for the potential treatment of fungal infections.

Novel triazole derivatives containing different ester skeleton: Design, synthesis, biological evaluation and molecular docking

Han, Xiaoyan,Ren, Liwen,Song, Yali,Sun, Xiaoyang,Wang, Jinhua,Wang, Shumin,Xiao, Bin,Zhang, Na

, p. 64 - 69 (2020/02/03)

Invasive fungal disease constitutes a growing health problem and development of novel antifungal drugs with high potency and selectivity are in an urgent need. In this study, a novel series of triazole derivatives containing different ester skeleton were designed and synthesized. Microdilution broth method was used to investigate antifungal activity. Significant inhibitory activity of compounds 5c, 5d, 5e, 5f, 5m and 5n was evaluated against the Candida albicans (I), Candida albicans clinical isolate (II), Candida glabrata clinical isolate (I), and Candida glabrata (II) with minimum inhibitory concentrations (MIC80) values ranging from 2 to 16μg/mL. Notably, compounds 5e and 5n showed the best inhibition against Candida albicans (II), Candida glabrata (I), and Candida glabrata (II) at the concentrations of 2 and 8μg/mL, respectively. Molecular docking study revealed that the target compounds interacted with CYP51 mainly through hydrophobic and van der Waals interactions. The results indicated that these novel triazole derivatives could serve as promising leads for development of antifungal agents.

Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo

Zhang, Lan,Fu, Leilei,Zhang, Shouyue,Zhang, Jin,Zhao, Yuqian,Zheng, Yaxin,He, Gu,Yang, Shengyong,Ouyang, Liang,Liu, Bo

, p. 2687 - 2701 (2017/04/06)

UNC-51-like kinase 1 (ULK1) is well-known to initiate autophagy, and the downregulation of ULK1 has been found in most breast cancer tissues. Thus, the activation of ULK1-modulated autophagy could be a promising strategy for breast cancer therapy. In this study, we found that ULK1 was remarkably downregulated in breast cancer tissue samples by The Cancer Genome Atlas (TCGA) analysis and tissue microarray (TMA) analysis, especially in triple negative breast cancer (TNBC). To design a ULK1 agonist, we integrated in silico screening and chemical synthesis to acquire a series of small molecule candidates. After rounds of kinase and anti-proliferative activity screening, we discovered the small molecule, LYN-1604, to be the best candidate for a ULK1 agonist. Additionally, we identified that three amino acid residues (LYS50, LEU53, and TYR89) were key to the activation site of LYN-1604 and ULK1 by site-directed mutagenesis and biochemical assays. Subsequently, we demonstrated that LYN-1604 could induce cell death, associated with autophagy by the ULK complex (ULK1-mATG13-FIP200-ATG101) in MDA-MB-231 cells. To further explore LYN-1604-induced autophagic mechanisms, we found some potential ULK1 interactors, such as ATF3, RAD21, and caspase3, by performing comparative microarray analysis. Intriguingly, we found that LYN-1604 induced cell death involved in ATF3, RAD21, and caspase3, accompanied by autophagy and apoptosis. Moreover, we demonstrated that LYN-1604 has potential for good therapeutic effects on TNBC by targeting ULK1-modulated cell death in vivo; thus making this ULK1 agonist a novel potential small-molecule drug candidate for future TNBC therapy.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 58905-18-3