Relevant articles and documents
All total 102 Articles be found
METHODS OF TREATING PAINFUL DIABETIC PERIPHERAL NEUROPATHY
-
Paragraph 0164-0166, (2021/05/14)
Provided herein are methods of treating painful diabetic peripheral neuropathy, such as advanced painful DPN, in a patient by administering to the patient an effective amount of NYX-2925 or a pharmaceutically acceptable salt thereof. Also provided are crystalline forms of 3-hydroxy-2-(5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl)butanamide.
Direct Amidation of Esters by Ball Milling**
Nicholson, William I.,Barreteau, Fabien,Leitch, Jamie A.,Payne, Riley,Priestley, Ian,Godineau, Edouard,Battilocchio, Claudio,Browne, Duncan L.
supporting information, p. 21868 - 21874 (2021/09/02)
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
X-ray Structure-Guided Discovery of a Potent, Orally Bioavailable, Dual Human Indoleamine/Tryptophan 2,3-Dioxygenase (hIDO/hTDO) Inhibitor That Shows Activity in a Mouse Model of Parkinson’s Disease
Ning, Xiang-Li,Li, Yu-Zhi,Huo, Cui,Deng, Ji,Gao, Cheng,Zhu, Kai-Rong,Wang, Miao,Wu, Yu-Xiang,Yu, Jun-Lin,Ren, Ya-Li,Luo, Zong-Yuan,Li, Gen,Chen, Yang,Wang, Si-Yao,Peng, Cheng,Yang, Ling-Ling,Wang, Zhou-Yu,Wu, Yong,Qian, Shan,Li, Guo-Bo
supporting information, p. 8303 - 8332 (2021/06/30)
Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan 2,3-dioxygenase (hTDO) have been closely linked to the pathogenesis of Parkinson’s disease (PD); nevertheless, development of dual hIDO1 and hTDO inhibitors to evaluate their potential efficacy against PD is still lacking. Here, we report biochemical, biophysical, and computational analyses revealing that 1H-indazole-4-amines inhibit both hIDO1 and hTDO by a mechanism involving direct coordination with the heme ferrous and ferric states. Crystal structure-guided optimization led to23, which manifested IC50values of 0.64 and 0.04 μM to hIDO1 and hTDO, respectively, and had good pharmacokinetic properties and brain penetration in mice.23showed efficacy against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse motor coordination deficits, comparable to Madopar, an anti-PD medicine. Further studies revealed that different from Madopar,23likely has specific anti-PD mechanisms involving lowering IDO1 expression, alleviating dopaminergic neurodegeneration, reducing inflammatory cytokines and quinolinic acid in mouse brain, and increasing kynurenic acid in mouse blood.