Welcome to LookChem.com Sign In|Join Free

CAS

  • or

634-02-6

Post Buying Request

634-02-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

634-02-6 Usage

Definition

ChEBI: A 2',3'-cyclic purine nucleotide in which guanosine is used as the parent nucleoside.

Check Digit Verification of cas no

The CAS Registry Mumber 634-02-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,3 and 4 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 634-02:
(5*6)+(4*3)+(3*4)+(2*0)+(1*2)=56
56 % 10 = 6
So 634-02-6 is a valid CAS Registry Number.

634-02-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2',3'-cyclic GMP

1.2 Other means of identification

Product number -
Other names [1]naphthyl-o-tolyl-amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:634-02-6 SDS

634-02-6Relevant articles and documents

Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation

Song, Emilie Yeonwha,Jiménez, Eddy Ivanhoe,Lin, Huacan,Le Vay, Kristian,Krishnamurthy, Ramanarayanan,Mutschler, Hannes

supporting information, p. 2952 - 2957 (2020/12/13)

RNA-catalyzed RNA ligation is widely believed to be a key reaction for primordial biology. However, since typical chemical routes towards activating RNA substrates are incompatible with ribozyme catalysis, it remains unclear how prebiotic systems generated and sustained pools of activated building blocks needed to form increasingly larger and complex RNA. Herein, we demonstrate in situ activation of RNA substrates under reaction conditions amenable to catalysis by the hairpin ribozyme. We found that diamidophosphate (DAP) and imidazole drive the formation of 2′,3′-cyclic phosphate RNA mono- and oligonucleotides from monophosphorylated precursors in frozen water-ice. This long-lived activation enables iterative enzymatic assembly of long RNAs. Our results provide a plausible scenario for the generation of higher-energy substrates required to fuel ribozyme-catalyzed RNA synthesis in the absence of a highly evolved metabolism.

Catalysis of diribonucleoside monophosphate cleavage by water soluble copper(II) complexes of calix[4]arene based nitrogen ligands

Cacciapaglia, Roberta,Casnati, Alessandro,Mandolini, Luigi,Reinhoudt, David N.,Salvio, Riccardo,Sartori, Andrea,Ungaro, Rocco

, p. 12322 - 12330 (2007/10/03)

Calix[4]arenes functionalized at the 1,2-, 1,3-, and 1,2,3-positions of the upper rim with [12]ane-N3 ligating units were synthesized, and their bi- and trimetallic zinc(II) and copper(II) complexes were investigated as catalysts in the cleavage of phosphodiesters as RNA models. The results of comparative kinetic studies using monometallic controls indicate that the subunits of all of the zinc(II) complexes and of the 1,3-distal bimetallic copper(II) complex 7-Cu2 act as essentially independent monometallic catalysts. The lack of cooperation between metal ions in the above complexes is in marked contrast with the behavior of the 1,2-vicinal bimetallic copper(II) complex 6-Cu2, which exhibits high catalytic efficiency and high levels of cooperation between metal ions in the cleavage of HPNP and of diribonucleoside monophosphates NpN′. A third ligated metal ion at the upper rim does not enhance the catalytic efficiency, which excludes the simultaneous cooperation in the catalysis of the three metal ions in 8-Cu 3. Rate accelerations relative to the background brought about by 6-Cu2 and 8-Cu3 (1.0 mM catalyst, water solution, pH 7.0, 50 °C) are on the order of 104-fold, largely independent of the nucleobase structure, with the exception of the cleavage of diribonucleoside monophosphates in which the nucleobase N is uracil, namely UpU and UpG, for which rate enhancements rise to 105-fold. The rationale for the observed selectivity is discussed in terms of deprotonation of the uracil moiety under the reaction conditions and complexation of the resulting anion with one of the copper(II) centers.

Hydrolytic reactions of guanosyl-(3′,3′)-uridine and guanosyl-(3′,3′)-(2′,5′-di-O-methyluridine)

Kiviniemi, Anu,Loennberg, Tuomas,Ora, Mikko

, p. 11040 - 11045 (2007/10/03)

Hydrolytic reactions of guanosyl-(3′,3′)-uridine and guanosyl-(3′,3′)-(2′,5′-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2′-hydroxyl group as a hydrogen-bond donor upon departure of the 3′-uridine moiety. Under neutral and basic conditions, guanosyl-(3′,3′)-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH-]) of the P-O3′ bonds, giving uridine and guanosine 2′,3′-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2′- and 3′-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3′ bond of guanosyl-(3′,3′)-(2,5′-di-O-methyluridine) to yield 2′,5′-O-dimethyluridine and guanosine 2′,3′-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn2+ on the cleavage of the P-O3′ bonds of guanosyl-(3′,3′)-uridine is modest: about 6-fold acceleration was observed at [Zn2+] = 5 mmol L-1 and pH 5.6. With guanosyl-(3′,3′)-(2′,5′-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2′-hydroxyl group on the departure of the 3′-linked nucleoside, are discussed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 634-02-6