6558-73-2Relevant articles and documents
σ-Bond Hydroboration of Cyclopropanes
Arifin,Itami, Kenichiro,Kato, Hiroki,Kobayashi, Chisa,Kondo, Hiroki,Matsushita, Kaoru,Miyamura, Shin,Yamaguchi, Junichiro,Yokogawa, Daisuke
supporting information, p. 11306 - 11313 (2020/07/13)
Hydroboration of alkenes is a classical reaction in organic synthesis in which alkenes react with boranes to give alkylboranes with subsequent oxidation resulting in alcohols. The double bond (π-bond) of alkenes can be readily reacted with boranes owing to its high reactivity. However, the single bond (σ-bond) of alkanes has never been reacted. To pursue the development of σ-bond cleavage, we selected cyclopropanes as model substrates since they present a relatively weak σ-bond. Herein, we describe an iridium-catalyzed hydroboration of cyclopropanes, resulting in β-methyl alkylboronates. These unusually branched boronates can be derivatized by oxidation or cross-coupling chemistry, accessing "designer"products that are desired by practitioners of natural product synthesis and medicinal chemistry. Furthermore, mechanistic investigations and theoretical studies revealed the enabling role of the catalyst.
Reversible C-C bond activation enables stereocontrol in Rh-catalyzed carbonylative cycloadditions of aminocyclopropanes
Shaw, Megan H.,McCreanor, Niall G.,Whittingham, William G.,Bower, John F.
supporting information, p. 463 - 468 (2015/01/30)
Upon exposure to neutral or cationic Rh(I)-catalyst systems, amino-substituted cyclopropanes undergo carbonylative cycloaddition with tethered alkenes to provide stereochemically complex N-heterocyclic scaffolds. These processes rely upon the generation and trapping of rhodacyclopentanone intermediates, which arise by regioselective, Cbz-directed insertion of Rh and CO into one of the two proximal aminocyclopropane C-C bonds. For cyclizations using cationic Rh(I)-systems, synthetic and mechanistic studies indicate that rhodacyclopentanone formation is reversible and that the alkene insertion step determines product diastereoselectivity. This regime facilitates high levels of stereocontrol with respect to substituents on the alkene tether. The option of generating rhodacyclopentanones dynamically provides a new facet to a growing area of catalysis and may find use as a (stereo)control strategy in other processes.
Directing group enhanced carbonylative ring expansions of amino-substituted cyclopropanes: Rhodium-catalyzed multicomponent synthesis of N-heterobicyclic enones
Shaw, Megan H.,Melikhova, Ekaterina Y.,Kloer, Daniel P.,Whittingham, William G.,Bower, John F.
supporting information, p. 4992 - 4995 (2013/05/22)
Aminocyclopropanes equipped with suitable N-directing groups undergo efficient and regioselective Rh-catalyzed carbonylative C-C bond activation. Trapping of the resultant metallacycles with tethered alkynes provides an atom-economic entry to diverse N-heterobicyclic enones. These studies provide a blueprint for myriad N-heterocyclic methodologies.