Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6888-79-5

Post Buying Request

6888-79-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6888-79-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6888-79-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,8,8 and 8 respectively; the second part has 2 digits, 7 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 6888-79:
(6*6)+(5*8)+(4*8)+(3*8)+(2*7)+(1*9)=155
155 % 10 = 5
So 6888-79-5 is a valid CAS Registry Number.

6888-79-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-bromo-4-prop-1-en-2-ylbenzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6888-79-5 SDS

6888-79-5Relevant articles and documents

A donor-acceptor complex enables the synthesis of: E -olefins from alcohols, amines and carboxylic acids

Chen, Kun-Quan,Shen, Jie,Wang, Zhi-Xiang,Chen, Xiang-Yu

, p. 6684 - 6690 (2021/05/31)

Olefins are prevalent substrates and functionalities. The synthesis of olefins from readily available starting materials such as alcohols, amines and carboxylic acids is of great significance to address the sustainability concerns in organic synthesis. Metallaphotoredox-catalyzed defunctionalizations were reported to achieve such transformations under mild conditions. However, all these valuable strategies require a transition metal catalyst, a ligand or an expensive photocatalyst, with the challenges of controlling the region- and stereoselectivities remaining. Herein, we present a fundamentally distinct strategy enabled by electron donor-acceptor (EDA) complexes, for the selective synthesis of olefins from these simple and easily available starting materials. The conversions took place via photoactivation of the EDA complexes of the activated substrates with alkali salts, followed by hydrogen atom elimination from in situ generated alkyl radicals. This method is operationally simple and straightforward and free of photocatalysts and transition-metals, and shows high regio- and stereoselectivities.

Formal Allylation and Enantioselective Cyclopropanation of Donor/Acceptor Rhodium(II) Azavinyl Carbenes

Liu, Zhili,Chen, Lianfen,Zhu, Dong,Zhu, Shifa

supporting information, p. 1275 - 1279 (2021/02/20)

A highly efficient formal allylation of dihydronaphthotriazoles with alkenes under rhodium(II) catalysis is reported. Various allyl dihydronaphthalene derivatives were furnished via rhodium(II) azavinyl carbenes with moderate to good yields and excellent chemoselectivity. When monosubstituted alkenes are used, cyclopropanation occurs and good to excellent enantioselectivities have been achieved. Particularly noteworthy is the allylic C(sp2)-H activation instead of traditional C(sp3)-H activation in the formal allylation process.

Ni-Catalyzed Reductive Allylation of α-Chloroboronates to Access Homoallylic Boronates

Lou, Yixian,Qiu, Jian,Yang, Kai,Zhang, Feng,Wang, Chenglan,Song, Qiuling

supporting information, p. 4564 - 4569 (2021/06/28)

The transition-metal-catalyzed allylation reaction is an efficient strategy for the construction of new carbon-carbon bonds alongside allyl or homoallylic functionalization. Herein we describe a Ni-catalyzed reductive allylation of α-chloroboronates to efficiently render the corresponding homoallylic boronates, which could be readily converted into valuable homoallylic alcohols or amines or 1,4-diboronates. This reaction features a broad substrate scope with good functional group compatibility that is complementary to the existing methods for the preparation of homoallylic boronates.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6888-79-5