Welcome to LookChem.com Sign In|Join Free

CAS

  • or

72835-25-7

Post Buying Request

72835-25-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

72835-25-7 Usage

Synthesis Reference(s)

The Journal of Organic Chemistry, 22, p. 1636, 1957 DOI: 10.1021/jo01363a027

Check Digit Verification of cas no

The CAS Registry Mumber 72835-25-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,2,8,3 and 5 respectively; the second part has 2 digits, 2 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 72835-25:
(7*7)+(6*2)+(5*8)+(4*3)+(3*5)+(2*2)+(1*5)=137
137 % 10 = 7
So 72835-25-7 is a valid CAS Registry Number.
InChI:InChI=1/C6H5NS/c1-5-2-3-6(4-7)8-5/h2-3H,1H3

72835-25-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-Methylthiophene-2-carbonitrile

1.2 Other means of identification

Product number -
Other names 5-cyano-2-methylthiophene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:72835-25-7 SDS

72835-25-7Relevant articles and documents

Functionalization of photochromic dithienylmaleimides

Wutz,Falenczyk,Kuzmanovic,K?nig

, p. 18075 - 18086 (2015/03/04)

Photochromic dithienylmaleimides are well known molecular switches, but for applications the suitable functionalization of the photochromic scaffold is required. We report here synthetic routes to dithienylmaleimides, which are functionalized at three different positions: at each of the thiophene moieties and the maleimide nitrogen. A Perkin-type condensation of two thiophene precursors is used as the key step to assemble the maleimide core, which allows the synthesis of non-symmetrically substituted dithienylmaleimides, such as photochromic amino acids. A different approach to the maleimide core is provided by the reaction of a dithienylmaleic anhydride with amines or hydrazides leading to maleimide protected dithienylmaleimides and photochromic labeled natural amino acids. The photochromic properties of the new photoswitches were investigated showing reversible photochromism in polar organic solvents. This journal is

Cyanation of aryl bromides with K4[Fe(CN)6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes

Gerber, Roman,Oberholzer, Miriam,Frech, Christian M.

supporting information; experimental part, p. 2978 - 2986 (2012/04/04)

Dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium [(P{(NC 5H10)(C6H11)2}) 2PdCl2] (1) is a highly active and generally applicable C-C cross-coupling catalyst. Apart from its high catalytic activity in Suzuki, Heck, and Negishi reactions, compound 1 also efficiently converted various electronically activated, nonactivated, and deactivated aryl bromides, which may contain fluoride atoms, trifluoromethane groups, nitriles, acetals, ketones, aldehydes, ethers, esters, amides, as well as heterocyclic aryl bromides, such as pyridines and their derivatives, or thiophenes into their respective aromatic nitriles with K4[Fe(CN)6] as a cyanating agent within 24 h in NMP at 140 °C in the presence of only 0.05 mol % catalyst. Catalyst-deactivation processes showed that excess cyanide efficiently affected the molecular mechanisms as well as inhibited the catalysis when nanoparticles were involved, owing to the formation of inactive cyanide complexes, such as [Pd(CN)4]2-, [(CN)3Pd(H)]2-, and [(CN)3Pd(Ar)]2-. Thus, the choice of cyanating agent is crucial for the success of the reaction because there is a sharp balance between the rate of cyanide production, efficient product formation, and catalyst poisoning. For example, whereas no product formation was obtained when cyanation reactions were examined with Zn(CN)2 as the cyanating agent, aromatic nitriles were smoothly formed when hexacyanoferrate(II) was used instead. The reason for this striking difference in reactivity was due to the higher stability of hexacyanoferrate(II), which led to a lower rate of cyanide production, and hence, prevented catalyst-deactivation processes. This pathway was confirmed by the colorimetric detection of cyanides: whereas the conversion of β-solvato-α-cyanocobyrinic acid heptamethyl ester into dicyanocobyrinic acid heptamethyl ester indicated that the cyanide production of Zn(CN)2 proceeded at 25 °C in NMP, reaction temperatures of >100 °C were required for cyanide production with K4[Fe(CN) 6]. Mechanistic investigations demonstrate that palladium nanoparticles were the catalytically active form of compound 1. A balancing act: Compound 1 (see scheme) is a highly active cyanation catalyst. Furthermore, a sharp balance between the rates of cyanide generation, efficient product formation, and catalyst deactivation owing to excess cyanide was observed in deactivation processes. Copyright

Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer

Dohi, Toshifumi,Morimoto, Koji,Takenaga, Naoko,Goto, Akihiro,Maruyama, Akinobu,Kiyono, Yorito,Tohma, Hirofumi,Kita, Yasuyuki

, p. 109 - 116 (2007/10/03)

Hypervalent iodine(III) reagents mediate the direct cyanating reaction of a wide range of electron-rich heteroaromatic compounds such as pyrroles 1, thiophenes 3, and indoles 5 under mild conditions (ambient temperature), without the need for any prefunctionalization. Commercially available trimethylsilylcyanide is usable as a stable and effective cyanide source, and the reaction proceeds in a homogeneous system. The N-substituent of pyrroles is crucial to avoid the undesired oxidative bipyrrole coupling process, and thus a cyano group was introduced selectively at the 2-position of N-tosylpyrroles 1 in good yields using the combination of phenyliodine bis(trifluoroacetate) (PIFA), TMSCN, and BF3·Et2O at room temperature. In the reaction mechanism, cation radical intermediates of heteroaromatic compounds are involved as a result of single electron oxidation, and the key to successful transformations seems to depend on the oxidation potential of the substrates used. Thus, the reaction was also successfully extended to other heteroaromatic compounds having oxidation potentials similar to that of N-tosylpyrroles such as thiophenes 3 and indoles 5. However, regioisomeric mixtures of the products derived from the reaction at the 2- and 3-positions were obtained in the case of N-tosylindole 5a. Further investigation performed in our laboratory provided insights into the real active iodine(III) species during the reaction; the reaction is induced by an active hypervalent iodine(III) species having a cyano ligand in situ generated by ligand exchange reaction at the iodine(III) center between trifluoroacetoxy group in PIFA and TMSCN, and effective cyanide introduction into heteroaromatic compounds is achieved by means of the high cyano transfer ability of the hypervalent iodine(III)-cyano intermediates. In fact, the reaction of N-tosylpyrrole 1a with a hypervalent iodine(III)-cyano compound (e.g., (dicyano)iodobenzene 8), in the absence of TMSCN, took place to afford the 2-cyanated product 2a in good yield, and an effective preparation of the intermediates is of importance for successful transformation. 1,3,5,7-Tetrakis[4-{bis(trifluoroacetoxy)-iodo}phenyl]adamantane 12, a recyclable hypervalent iodine(III) reagent, was also comparable in the cyanating reactions as a valuable alternative to PIFA, affording a high yield of the heteroaromatic cyanide by facilitating isolation of the cyanated products with a simple workup. Accordingly, after preparing the active hypervalent iodine(III)-CN species by premixing of a recyclable reagent 12, TMSCN, and BF3· Et2U for 30 min in dichloromethane, reaction of a variety of pyrroles 1 and thiophenes 3 provided the desired cyanated products 2 and 4 in high yields. The iodine compound 13, recovered by filtration after replacement of the reaction solvent to MeOH, could be reused without any loss of activity (the oxidant 12 can be obtained nearly quantitatively by reoxidation of 13 using m-CPBA).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 72835-25-7